Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Nowadays, the Internet connects people, multimedia and physical objects leading to a new-wave of services. This includes learning applications, which require to manage huge and mixed volumes of information coming from Web and social media, smart-cities and Internet of Things nodes. Unfortunately, designing smart e-learning systems able to take advantage of such a complex technological space raises different challenges. In this perspective, this paper introduces a reference architecture for the development of future and big-data-capable e-learning platforms. Also, it showcases how data can be used to enrich the learning process.
Go to article

Abstract

This paper presents an experimental system for remote communication between road users and traffic signs. Implemented solution consists of two modules: a transmitter (traffic sign), including novel system for remote waking-up by the passing vehicle with use of the quasi-passive (biased) diode detector circuit, and a receiver (vehicle), which is responsible for wake-up signaling and interpreting received messages. Both modules use Wi-Fi protocol operating in 2.4 GHz ISM band for sending data, and OOK signaling in 868 MHZ ISM band for sending wake-up signals. The paper provides theoretical analysis, description of design challenges and chosen solutions, and finally, laboratory measurements as well as the results of tests conducted in the systems’ target environment with a moving vehicle, confirming correct operation of the system.
Go to article

Abstract

Internet of Things (IoT) will play an important role in modern communication systems. Thousands of devices will talk to each other at the same time. Clearly, smart and efficient hardware will play a vital role in the development of IoT. In this context, the importance of antennas increases due to them being essential parts of communication networks. For IoT applications, a small size with good matching and over a wide frequency range is preferred to ensure reduced size of communication devices. In this paper, we propose a structure and discuss design optimization of a wideband antenna for IoT applications. The antenna consists of a stepped-impedance feed line, a rectangular radiator and a ground plane. The objective is to minimize the antenna footprint by simultaneously adjusting all geometry parameters and to maintain the electrical characteristic of antenna at an acceptable level. The obtained design exhibits dimensions of only 3.7 mm × 11.8 mm and a footprint of 44 mm2, an omnidirectional radiation pattern, and an excellent pattern stability. The proposed antenna can be easily handled within compact communication devices. The simulation results are validated through measurements of the fabricated antenna prototype.
Go to article

Abstract

Recent rapid developments in information and network technology have profoundly influenced manufacturing research and its application. However, the product’s functionality and complexity of the manufacturing environments are intensifying, and organizations need to sustain the advantage of huge competitiveness in the markets. Hence, collaborative manufacturing, along with computer-based distributed management, is essential to enable effective decisions and to increase the market. A comprehensive literature review of recent and state-of-the-art papers is vital to draw a framework and to shed light on the future research avenues. In this review paper, the use of technology and management by means of collaborative and cloud manufacturing process and big data in networked manufacturing system have been discussed. A systematic review of research papers is done to draw conclusion and moreover, future research opportunities for collaborative manufacturing system were highlighted and discussed so that manufacturing enterprises can take maximum benefit.
Go to article

This page uses 'cookies'. Learn more