Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Final quality of casts produced in a die casting process represents a correlation of setting of technological parameters of die casting cycle, properties of alloy, construction of a die and structure of gating and of bleeding systems. Suitable structure of a gating system with an appertaining bleeding system of the die can significantly influence mechanical and structural properties of a cast. The submitted paper focuses on influence of position of outfall of an gate into the cast on its selected quality properties. Layout of the test casts in the die was designed to provide filling of a shaping cavity by the melt with diverse character of flowing. Setting of input technological parameters during experiment remained on a constant level. The only variable was the position of the gate. Homogeneity represented by porosity f and ultimate strength Rm were selected to be the assessed representative quality properties of the cast. The tests of the influence upon monitored parameters were realized in two stages. The test gating system was primarily subjected to numerical tests with the utilization of a simulation program NovaFlow&Solid. Consequently, the results were verified by the experimental tests carried out with the physical casts produced during operation. It was proved that diverse placement of the gate in relation to the cast influences the mode of the melt flowing through the shaping cavity which is reflected in the porosity of the casts. The experimental test proved correlation of porosity f of the cast with its ultimate strength Rm. At the end of the paper, the interaction dependencies between the gate position, the mode of filling the die cavity, porosity f and ultimate strength Rm.
Go to article

Abstract

Results of a research on influence of chromium, molybdenum and aluminium on structure and selected mechanical properties of Ni-Mn-Cu cast iron in the as-cast and heat-treated conditions are presented. All raw castings showed austenitic matrix with relatively low hardness, making the material machinable. Additions of chromium and molybdenum resulted in higher inclination to hard spots. However, a small addition of aluminium slightly limited this tendency. Heat treatment consisting in soaking the castings at 500 °C for 4 h resulted in partial transformation of austenite to acicular, carbon-supersaturated ferrite, similar to the bainitic ferrite. A degree of this transformation depended not only on the nickel equivalent value (its lower value resulted in higher transformation degree), but also on concentrations of Cr and Mo (transformation degree increased with increasing total concentration of both elements). The castings with the highest hard spots degree showed the highest hardness, while hardness increase, caused by heat treatment, was the largest in the castings with the highest austenite transformation degree. Addition of Cr and Mo resulted in lower thermodynamic stability of austenite, so it appeared a favourable solution. For this reason, the castings containing the highest total amount of Cr and Mo with an addition of 0.4% Al (to reduce hard spots tendency) showed the highest tensile strength.
Go to article

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.
Go to article

Abstract

The article presents the results of research concerning AlCu4MgSi alloy ingots produced using horizontal continuous casting process under variable conditions of casting speed and cooling liquid flow through the crystallizer. The mechanical properties and structure of the obtained ingots were correlated with the process parameters. On the basis of the obtained results, it has been shown that depending on the cooling rate and the intensity of convection during solidification, significant differences in the mechanical properties and structure and of the ingots can occur. The research has shown that, as the casting speed and the flow rate of the cooling liquid increase, the hardness of the test samples decreases, while their elongation increases, which is related to the increase of the average grain size. Also, the morphology of the intermetallic phases precipitations lattice, as well as the centerline porosity and dendrite expansion, significantly affect the tensile strength and fracture mechanism of the tested ingots.
Go to article

Abstract

The paper presents some aspects of a development project related to Industry 4.0 that was executed at Nemak, a leading manufacturer of the aluminium castings for the automotive industry, in its high pressure die casting foundry in Poland. The developed data analytics system aims at predicting the casting quality basing on the production data. The objective is to use these data for optimizing process parameters to raise the products’ quality as well as to improve the productivity. Characterization of the production data including the recorded process parameters and the role of mechanical properties of the castings as the process outputs is presented. The system incorporates advanced data analytics and computation tools based on the analysis of variance (ANOVA) and applying an MS Excel platform. It enables the foundry engineers and operators finding the most efficient process variables to ensure high mechanical properties of the aluminium engine block castings. The main features of the system are explained and illustrated by appropriate graphs. Chances and threats connected with applications of the data-driven modelling in die casting are discussed.
Go to article

This page uses 'cookies'. Learn more