Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Tetranychus urticae (Acari: Tetranychidae) infesting many plants but Mentha viridis L., and Mentha piperita L., were low in number of infestation. Therefore the objective of this study was to identify the resistance of M. viridis and M. piperita plants against T. urticae by studying the external shape and internal contents of those plants. For morphological studies, dried leaves were covered with gold utilizing an Edwards Scan coat six sputter-coater. For histological studies, arrangements of Soft Tissue technique were used. For phytochemical studies, the plants were cut, dried and then high performance liquid chromatography (HPLC) was used. While feeding the mites were collected from the area between oily glands, trichomes and respiratory stomata in both mint species. The most important leaf structures in aromatic plants are the oily glands found on the external part of the leaves (both upper and lower epidermis). The number of oil glands in M. viridis leaves was greater than in M. piperita; the trichomes on the epidermis of M. viridis were greater in number than in M. piperita; the spongy mesophyll in M. viridis was much thicker than in M. piperita. The essential oils in the leaves of both mint species contained 71 compounds representing 99.61% of the total oil constituents identified from M. viridis before infestation, and 90.95% after infestation, and about 99.65% from M. piperita before infestation, and 99.98% after infestation.
Go to article

Abstract

We investigated the antioxidant defense mechanism, metal uptake and lipid peroxidation (LPO) levels at different leaf positions in Mentha piperita L. grown in Mn2+-deficient and control conditions. Under manganese deficiency the activity of superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GuaPOX) and the content of ascorbate, chlorophyll, and carotenoid under Mn2+ deficiency were significantly lower than in the control for all leaf positions. SOD activity correlated positively with Mn2+ uptake. Fe2+ uptake was inhibited by Mn2+ deficiency. During early stages of Mn2+ deficiency, M. piperita leaves showed relatively more antioxidant activity and lower LPO. Towards the final stages of the treatment period, comparatively lower SOD, CAT and GuaPOX activity and higher LPO levels accelerated the senescence process.
Go to article

This page uses 'cookies'. Learn more