Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 47
items per page: 25 50 75
Sort by:

Abstract

A proper management of sand grains of moulding sands requires knowing basic properties of the spent matrix after casting knocking out. This information is essential from the point of view of the proper performing the matrix recycling process and preparing moulding sands with reclaimed materials. The most important parameter informing on the matrix quality – in case of moulding sands with organic binders after casting knocking out – is their ignition loss. The methodology of estimating ignition loss of spent moulding sands with organic binder– after casting knocking out - developed in AGH, is presented in the paper. This method applies the simulation MAGMA software, allowing to determine this moulding sand parameter already at the stage of the production preparation.
Go to article

Abstract

Drops of molten cast iron were placed on moulding sand substrates. The composition of the forming gaseous atmosphere was examined. It was found that as a result of the cast iron contact with water vapour released from the sand, a significant amount of hydrogen was evolved. In all the examined moulding sands, including sands without carbon, a large amount of CO was formed. The source of carbon monoxide was carbon present in cast iron. In the case of bentonite moulding sand with seacoal and sand bonded with furan resin, in the composition of the gases, the trace amounts of hydrocarbons, i.e. benzene, toluene, styrene and naphthalene (BTX), appeared. As the formed studies indicate much higher content of BTX at lower temperature it was concluded that the hydrocarbons are unstable in contact with molten iron
Go to article

Abstract

This paper presents a new perspective on the issue of reclamation of moulding and core sands. Taking as a premise that the reclamation process must remain on the surface of grains some not separated binding materials rests, it should be chosen the proper moulding sand’s composition that will be least harmful for the reclaim quality. There are two different moulding and core sands taken into examinations. The researches prove that a small correction of their compositions (hardener type) improves the quality of the received reclaims. Carried out in this article studies have shown that such an approach to the problem of reclamation of the moulding and core sands is needed and reasonable.
Go to article

Abstract

Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were aimed at the selection of the neural network able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability, compactibility and the compressive strength. Then, the data of selected parameters of new moulding sand were set to selected artificial neural network models. This was made to test the universality of the model in relation to other moulding sands. An application of the Statistica program allowed to select automatically the type of network proper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageous conditions were obtained for the uni-directional multi-layer perception (MLP) network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.
Go to article

Abstract

The investigation results of the reclamation of spent moulding sands with furfuryl resin are presented in this paper. The reclamation process was performed in the secondary reclamation chamber of the REGMAS 1.5 vibratory reclaimer. 70 kg portions of moulding sands, previously subjected to the primary reclamation and dedusting, were used. The secondary reclamation was performed in two stages: the first consisted of determining the reclaimer intensity at various reclamation times (5 min, 10 min and 15 min) and various electrovibrator frequencies (40 Hz, 50 Hz and 60 Hz), the second consisted of determining the influence of additional crushing elements on the intensity of processes.
Go to article

Abstract

In the paper, an attempt is made to explain the previously observed increased effectiveness of utilising hydrated sodium water-glass grade 137 after hardening moulding sands with selected physical methods. In the modified process of preparing sandmixes, during stirring components, water as a wetting additive was introduced to the sand-binder system. Presented are examination results of influence of faster microwave heating and slower traditional drying of the so-prepared moulding sands on their tensile and bending strength, calculated per weight fraction of the binder. The measurement results were confronted with SEM observations of linking bridges and with chemical analyses of grain surfaces of high-silica base. On the grounds of comprehensive evaluation of hardened moulding sands, positive effects were found of the applied physical process of binder dehydration and presence of the wetting additive. It was observed that introduction of this additive during stirring, before adding the binder, improves flowing the binder to the places where durable linking bridges are created. It was also found that the applied methods of hardening by dehydration enable creation of very durable linking bridges, strongly connected with the sand base, which results in damages of high-silica grain surfaces, when the bridges are destroyed.
Go to article

Abstract

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.
Go to article

Abstract

Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea–furfuryl, alkyd) under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAH) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulness assessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000 C – 13000 C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for the desorption of compounds adsorbed in the column with adsorbent was found. The temperature range, in which the maximal amounts of benzene, toluene, ethylobenzene and xylenes are released from the resin, was defined. The qualitative and quantitative analyses of compounds from the BTEX group were performed by means of the gas chromatography combined with the mass spectrometry (GC/MS).
Go to article

Abstract

The paper presents the results of an investigation of the thermal deformation of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using the hot-distortion method (DMA apparatus from Multiserw-Morek). The results were combined with linear deformation studies with determination of the linear expansion factor (Netzsch DIL 402C dilatometer). The study showed that the introduction of relaxation additive has a positive effect on the thermal stability of moulding sand by limiting the measured deformation value, in relation to the moulding sand without additive. In addition, a relaxation additive slightly changes the course of the dilatometric curve. Change in the linear dimension of the moulding sand sample with the relaxation additive differs by only 0.05%, in comparison to the moulding sand without additive.
Go to article

Abstract

The paper presents the results of basic research on the influence of the properties of sand grains on electrical properties of water glass moulding sands. It shows electrical properties of the main component – sand grains, crucial to the kinetics of moulding sands heating, such as permittivity εr and loss factor tgδ. Measurements were carried out with the use of the perturbation method for silica, chromite and olivine sands of different mineral, chemical composition and particle size distribution, as well as for moulding sands with water glass grade 145. Analysis of the results of measurements of electrical properties shows that all moulding sands are characterized by a similar permittivity εr and loss factor tgδ. It was found that the electrical properties and the quantity and quality of other components may have a decisive influence on the effectiveness and efficiency of the microwave heating of moulding sands with sand grains. In determining the ability to efficiently absorb the microwave radiation for mixtures which moulding sands are, the impact of all components influencing their individual technological parameters should be taken into account.
Go to article

Abstract

The new investigation method of the kinetics of the gas emission from moulding sands used for moulds and cores is presented in this paper. The gas evolution rate is presented not only as a function of heating time but also as a function of instantaneous temperatures. In relation to the time and heating temperature the oxygen and hydrogen contents in evolving gases was also measured. This method was developed in the Laboratory of Foundry Moulds Technology, Faculty of Foundry Engineering, AGH. Gas amounts which are emitted from the moulding sand at the given temperature recalculated to the time unit (kinetics) are obtained in investigations. Results of investigations of moulding sand with furan resin are presented - as an example - in the paper.
Go to article

Abstract

Gas emission from casting moulds, cores and coatings applied for sand and permanent moulds is one of the fundamental reasons of casting defects occurrence. In the previous studies, gas emission was measured in two ways: normalized, in which the evolving gas volume was measured during heating of the moulding sand sample in a sealed flask, or by measuring the amount of gas from sand core (sample) which is produced during the pouring of liquid metal. After the pouring process the sand mould is heated very unequally, the most heated areas are layers adjacent to the liquid metal. The emission of gas is significantly larger from the surface layer than from the remaining ones. New, original method of measuring kinetics of gas emission from very thin layers of sand moulds heated by liquid metal developed by the authors is presented in the hereby paper. Description of this new method and the investigation results of kinetics of gas emission from moulding sand with furan and alkyd resin are shown. Liquid grey cast iron and Al-Si alloy were used as a heat source in the sand moulds. Comparison of the kinetics of gas emission of these two kinds of moulding sands filled with two different alloys was made. The momentary metal temperature in sand mould was assigned to the kinetics of gas emission, what creates a full view of the possibility of formation of casting defects of the gaseous origin. Moulding sand with alkyd resin is characterized by larger gas emission; however gases are emitted slower than in the case of moulding sands with furan resin. This new investigation method has a high repeatability and is the only one which gives a full view of phenomenon’s in the surface layer which determines quality of the casings. The obtained results are presented on several graphs and analyzed in detail. They have a great application value and can be used in the production of iron as well as light metal alloy castings.
Go to article

Abstract

The results of researches of sorption processes of surface layers of components of sand moulds covered by protective coatings are presented in the hereby paper. Investigations comprised various types of sand grains of moulding sands with furan resin: silica sand, reclaimed sand and calcined in temperature of 700oC silica sand. Two kinds of alcoholic protective coatings were used – zirconium and zirconium – graphite. Tests were performed under condition of a constant temperature within the range 30 – 35oC and high relative air humidity 75 - 80%. To analyze the role of sand grains in sorption processes quantitavie moisture sorption with use of gravimetric method and ultrasonic method were used in measurements. The tendency to moisture sorption of surface layers of sand moulds according to the different kinds of sand grains was specified. The effectiveness of protective action of coatings from moisture sorption was analyzed as well. Knowledge of the role of sand grains from the viewpoint of capacity for moisture sorption is important due to the surface casting defects occurrence. In particular, that are defects of a gaseous origin caused by too high moisture content of moulds, especially in surface layers.
Go to article

Abstract

The article shows the influence of environment requirements on changes in different foundry moulding sands technologies such as cold box, self-hardening moulding sands and green sands. The aim of the article is to show the possibility of using the biodegradable materials as binders (or parts of binders’ compositions) for foundry moulding and core sands. The authors concentrated on the possibility of preparing new binders consisting of typical synthetic resins - commonly used in foundry practice - and biodegradable materials. According to own research it is presumed that using biodegradable materials as a part of new binders’ compositions may cause not only lower toxicity and better ability to reclaim, but may also accelerate the biodegradation rate of used binders. What’s more, using some kinds of biodegradable materials may improve flexibility of moulding sands with polymeric binder. The conducted research was introductory and took into account bending strength and thermal properties of furan moulding sands with biodegradable material (PCL). The research proved that new biodegradable additive did not decrease the tested properties.
Go to article

Abstract

Presented are results of a research on the possibility of using artificial neural networks for forecasting mechanical and technological parameters of moulding sands containing water-glass, hardened in the innovative microwave heating process. Trial predictions were confronted with experimental results of examining sandmixes prepared on the base of high-silica sand, containing various grades of sodium water-glass and additions of a wetting agent. It was found on the grounds of obtained values of tensile strength and permeability that, with use of artificial neural networks, it is possible complex forecasting mechanical and technological properties of these materials after microwave heating and the obtained data will be used in further research works on application of modern analytic methods for designing production technology of high-quality casting cores and moulds.
Go to article

Abstract

Modern techniques of castings production, including moulding sands production, require a strict technological regime and high quality materials. In the case of self-hardening moulding sands with synthetic binders those requirements apply mainly to sand, which adds to more than 98% of the whole moulding sand mixture. The factors that affect the quality of the moulding sands are both chemical (SiO2 , Fe2O3 and carbonates content) and physical. Among these factors somewhat less attention is paid to the granulometric composition of the sands. As a part of this study, the effect of sand quality on bending strength Rgu and thermal deformation of self-hardening moulding sands with furfural and alkyd resin was assessed. Moulding sands with furfural resin are known [1] to be the most susceptible to the sand quality. A negative effect on its properties has, among others, high content of clay binder and so-called subgrains (fraction smaller than 0,1mm), which can lead to neutralization of acidic hardeners (in the case of moulding sands with furfuryl resin) and also increase the specific surface, what forces greater amount of binding agents. The research used 5 different quartz sands originating from different sources and characterized with different grain composition and different clay binder content.
Go to article

Abstract

This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εrfor a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.
Go to article

Abstract

Achieving control of coating thickness in foundry moulds is needed in order to guarantee uniform properties of the mould but also to achieve control of drying time. Since drying time of water based coatings is heavily dependent on the amount of water present in the coating layer, a stable coating process is prerequisite for a stable drying process. In this study, we analyse the effect of different variables on the coating layer properties. We start by considering four critical variables identified in a previous study such as sand compaction, coating density, dipping time and gravity and then we add centre points to the original experimental plans to identify possible non-linear effects and variation in process stability. Finally, we investigate the relation between coating penetration (a variable that is relatively simple to measure in production) and other coating layer thickness properties (relevant for the drying process design). Correlations are found and equations are provided. In particular it is found that water thickness can be directly correlated to penetration with a simple linear equation and without the need to account for other variables.
Go to article

Abstract

The subject of this paper was to compare the influence of selected coatings on bending strength of moulds and cores manufactured in a furan technology. In a range of study, there were used three kinds of coatings - water based coating and two kind of alcohol based coating manufactured by FOSECO. Coating were applicated by brush, overpouring/flow and spraying. For each application method, there were realized different kind of drying- at ambient temperature, in a furnace and by burning. Physicochemical properties of coatings were such selected to accommodate them to the application method and type of coating. Based on the conducted studies it was observed that for water based coating application method doesn’t have an important influence on bending strength and it is necessary to optimize the time and temperature of drying to achieve better results of bending strength. For alcohol based coatings, drying by burning causes significant deterioration of bending strength of the mould and core and drying process at ambient allows to obtain high bending strength of mould/cores in regard to time of drying.
Go to article

Abstract

The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.
Go to article

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.
Go to article

Abstract

A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass) are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.
Go to article

This page uses 'cookies'. Learn more