Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 106
items per page: 25 50 75
Sort by:

Abstract

The paper presents the results of simulation tests of hydraulic resistance and temperature distribution of the prototype Stirling alpha engine supplied with waste heat. The following elements were analyzed: heater, regenerator and cooler. The engine uses compressed air as a working gas. Analyses were carried out for three working pressure values and different engine speeds. The work was carried out in order to optimize the configuration of the engine due to the minimization of hydraulic resistance, while maintaining the required thermal capacity of the device. Preliminary tests carried out on the real object allowed to determine boundary and initial conditions for simulation purposes. The simulation assumes that there is no heat exchange between the regenerator and the environment. The solid model used in simulation tests includes the following elements: supply channel, heater, regenerator, cooler, discharge channel. Due to the symmetrical structure of the analyzed elements, simulation tests were carried out using 1/6 of the volume of the system.
Go to article

Abstract

In this paper we discuss the test results for concretes containing various amounts of ggbs as compared to concretes made with Portland cement. The main objective of these tests is to evaluate the influence of varying air content in such mixtures on the structure and frost resistance of concrete. The authors suggest that the approach presented here allows for a safe design of concrete mixtures in terms of their frost resistance. The results indicate that concrete can be resistant to surface scaling even at the W/C ratio markedly higher than 0.45. Increased addition of ggbs leads to a decrease in concrete resistance to surface scaling. Proper air entrainment is the fundamental factor for frost-resistant concrete, and the air void system has to be assessed (micropore content A₃₀₀, spacing factor L). The addition of ggbs increases pore diameters, thus, to obtain the appropriate air pore spacing factor, micropore quantities introduced have to be increased.
Go to article

Abstract

This paper presents research results of composite tubes filled with self-compacting concrete. The impact of the selected materials and geometric factors on resistance to the vertical shear was evaluated in this study. The resistance of the tested members was compared with recommendations given in Eurocode PN-EN 1994-1-1. From the results obtained in the tests it can be deduced that more parameters should be taken into consideration when determining resistance to the vertical shear in the interface between steel and concrete than PN-EN 1994-1-1 recommends.
Go to article

Abstract

Theoretical and experimental research indicates that radial loads have a significant influence on the value of belt-on-idler rolling resistances. Computational models discussed in literature use the notion of unit rolling resistance, i.e. rolling resistance per unit length of the idler. The total value of the rolling resistance of belt on a single idler is determined by integrating unit rolling resistance with respect to the length of the contact zone between the belt and the idler. This procedure requires the knowledge of normal load distribution along the contact zone between the belt and the idler. Loads acting on the idler set have been the object of both theoretical analyses and laboratory tests. Literature mentions several models which describe the distribution of normal loads along the contact zone between the belt and the idler set (Krause & Hettler, 1974; Lodewijks, 1996; Gładysiewicz, 2003; Jennings, 2014). Numerous experimental tests (Gładysiewicz & Kisielewski, 2017; Król, 2017; Król & Zombroń, 2012) demonstrated that the resultant normal loads acting on idlers are approximate to the loads calculated in theoretical models. If the resultant normal load is known, it is possible to assume the distribution of loads acting along the contact zone between the belt and the idler. This paper analyzes various hypothetical load distributions calculated for both the center idler roll and for the side idler roll. It also presents the results of calculations of belt rolling resistances for the analyzed distributions. In addition, it presents the results of calculations with allowance for load distribution along the generating line of the idler.
Go to article

Abstract

DC resistivity soundings and geomorphological surveys have been carried out in the marginal zones and adjacent outwash plains of two glaciers in central Spitsbergen, Norwegian Arctic: Ebbabreen and Hörbyebreen. The study has revealed complex relationships between landforms, buried glacier ice and permafrost. From this work it is possible to distinguish between moraine ridges which are ice-cored and those which are not. The latter occur in areas which have possibly been affected by glacier surge. The active layer thickness was found to be 0.4 to 2.5 m for diamicton deposits (moraines) and 0.3 to 1.6 m in outwash glacifluvial sediments. The sediment infill thickness in valleys was determined to be as much as 20 m, thereby demonstrating that sandurs have important role in sediment storage in a glacial system. Typical resistivity values for sediment types in both the active layer and in permafrost were also determined.
Go to article

Abstract

Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section resistance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The "Critical Plate" (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. lt was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model
Go to article

Abstract

Assessment of the flexural buckling resistance of bisymmetrical I-section beam-columns using FEM is widely discussed in the paper with regard to their imperfect model. The concept of equivalent geometric imperfections is applied in compliance with the so-called Eurocode’s general method. Various imperfection profiles are considered. The global effect of imperfections on the real compression members behaviour is illustrated by the comparison of imperfect beam-columns resistance and the resistance of their perfect counterparts. Numerous FEM simulations with regard to the stability behaviour of laterally and torsionally restrained steel structural elements of hot-rolled wide flange HEB section subjected to both compression and bending about the major or minor principal axes were performed. Geometrically and materially nonlinear analyses, GMNA for perfect structural elements and GMNIA for imperfect ones, preceded by LBA for the initial curvature evaluation of imperfect member configuration prior to loading were carried out. Numerical modelling and simulations were conducted with use of ABAQUS/Standard program. FEM results are compared with those obtained using the Eurocode’s interaction criteria of Method 1 and 2. Concluding remarks with regard to a necessity of equivalent imperfection profiles inclusion in modelling of the in-plane resistance of compression members are presented.
Go to article

Abstract

The objective of the presented paper is to investigate the performance of concrete containing volcanic scoria as cement replacement after 7, 28, 90, and 180 days curing. Five performance indicators have been studied. Compressive strength, water permeability, porosity, chloride penetrability, and reinforcement corrosion resistance have all been evaluated. Concrete specimens were produced with replacement levels ranging from 10 to 35%. Test results revealed that curing time had a large influence on all the examined performance indicators of scoria-based concrete. Water permeability, porosity, and chloride penetrability of scoria-based concrete mixes were much lower than that of plain concrete. Concretes produced with scoria-based binders also decelerated rebar corrosion, particularly after longer curing times. Furthermore, an estimation equation has been developed by the authors to predict the studied performance indicators, focusing on the curing time and the replacement level of volcanic scoria. SEM/EDX analysis has been reported as well.
Go to article

Abstract

The main scientific goal of this work is the presentation of the role of selected geophysical methods (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT) to identify water escape zones from retention reservoirs. The paper proposes a methodology of geophysical investigations for the identification of water escape zones from a retention fresh water lake (low mineralised water). The study was performed in a lake reservoir in Upper Silesia. Since a number of years the administrators of the lake have observed a decreasing water level, a phenomenon that is not related to the exploitation of the object. The analysed retention lake has a maximal depth between 6 and 10 m, depending on the season. It is located on Triassic carbonate rocks of the Muschelkalk facies. Geophysical surveys included measurements on the water surface using ground penetration radar (GPR) and electrical resistivity tomography (ERT) methods. The measurements were performed from watercrafts made of non-metal materials. The prospection reached a depth of about 1 to 5 m below the reservoir bottom. Due to large difficulties of conducting investigations in the lake, a fragment with an area of about 5,300 m 2, where service activities and sealing works were already commenced, was selected for the geophysical survey. The scope of this work was: (1) field geophysical research (Ground-Penetrating Radar GPR and Electrical Resistivity Tomography ERT with geodesic service), (2) processing of the obtained geophysical research results, (3) modelling of GPR and ERT anomalies on a fractured water reservoir bottom, and (4) interpretation of the obtained results based on the modelled geophysical anomalies. The geophysical surveys allowed for distinguishing a zone with anomalous physical parameters in the area of the analysed part of the retention lake. ERT surveys have shown that the water escape zone from the reservoir was characterised by significantly decreased electrical resistivities. Diffraction hyperboles and a zone of wave attenuation were observed on the GPR images in the lake bottom within the water escape zone indicating cracks in the bottom of the water reservoir. The proposed methodology of geophysical surveys seems effective in solving untypical issues such as measurements on the water surface.
Go to article

Abstract

Between 2004 and 2017, multiple studies on the herbicide resistance of weeds were conducted by the Institute of Plant Protection – National Research Institute in Poland. Weed seeds, collected from fields located in various regions of Poland where herbicide use was ineffective, were used in studies conducted under greenhouse conditions. A total of 261 loose silky bent (Apera spica-venti L.) samples were found to be herbicide resistant, which translates to 52.4% of the fields under study. Nearly 50% of the analyzed samples exhibited resistance to sulfonylurea herbicides. Resistance to acetyl CoA carboxylase (ACCase) inhibitors was found in 18 fields, whereas resistance to photosystem II (PSII) inhibitors (isoproturon) was found in 12 fields. Herbicide resistance of blackgrass (Alopecurus myosuroides Huds.) occurred in 26 of the fields under study. In addition, resistance of wild oat (Avena fatua L.) to acetyl CoA carboxylase inhibitors occurred in 10 spring cereal crops. In the case of winter wheat, resistance of cornflower (Centaurea cyanus L.) to tribenuron-methyl occurred in 23 fields. Scentless chamomile (Matricaria inodora L.) and field poppy (Papaver rhoeas L.) were resistant to tribenuron-methyl in four and three fields, respectively, of winter wheat. In the case of sugar beet, three biotypes of fat hen (Chenopodium album L.) and two biotypes of redroot amaranth (Amaranthus retroflexus L.) were resistant to metamitron. Horseweed (Conyza canadensis L.), which grows on railway tracks, exhibited resistance to glyphosate. This paper reviews all studies conducted in Poland on weed resistance. Based on the results, maps of weed resistance in Poland were created.
Go to article

Abstract

The paper presents the initial results of investigation concerning the abrasion resistance of cast iron with nodular, vermicular, or flake graphite. The nodular and vermicular cast iron specimens were cut out of test coupons of the IIb type with the wall thickness equal to 25 mm, while the specimens made of grey cast iron containing flake graphite were cut out either of special casts with 20 mm thick walls or of the original brake disk. The abrasion tests were carried out by means of the T-01M tribological unit working in the pin-on-disk configuration. The counterface specimens (i.e. the disks) were made of the JT6500 brand name friction material. Each specimen was abraded over a distance of 4000 m. The mass losses, both of the specimens and of the counterface disks, were determined by weighting. It was found that the least wear among the examined materials was exhibited by the nodular cast iron. In turn, the smallest abrasion resistance was found in vermicular cast iron and in cast iron containing flake graphite coming from the brake disk. However, while the three types of specimens (those taken from the nodular cast iron and from grey cast iron coming either from the special casts or from the brake disk) have almost purely pearlitic matrix (P95/Fe05), the vermicular cast iron matrix was composed of pearlite and ferrite occurring in the amounts of about 50% each (P50/Fe50). Additionally, it was found that the highest temperature at the cast iron/counterface disk contact point was reached during the tests held for the nodular cast iron, while the lowest one occurred for the case of specially cast grey iron.
Go to article

Abstract

These joints are used when the designer and contractor anticipate difficulties during the construction of overlap joints. They were not included in the PN EN 1993‒1‒8 in full scale. Resistance assessment of such joints is presented in accordance with standard rules. The results were compared with the experimental studies carried out at the “Mostostal” Centre; while the former research activities and the legitimacy of the proposed method of assessing the resistance of these joints was confirmed. This is an example of an overlap joint calculation.
Go to article

Abstract

The paper presents the results of studies of hybrid composite layers Ni/Al2O3/Cgraphite produced by the electrodeposition method. Three variants of hybrid composite layers were prepared in electrolyte solutions with the same amounts of each dispersion phases which were equal to 0.25; 0.50 and 0.75 g/dm3. The structure of Ni/Al2O3/Cgraphite layers as well as the Al2O3 and graphite powders, which were used as dispersion phases was investigated. The results of morphology and surface topography of produced layers are presented. The modulus of elasticity and microhardness of the material of produced layers were determined by DSI method. Tribological and corrosion resistance tests of produced layers were carried out. Realized studies have shown that the material of the produced layers is characterized by a nanocrystalline structure. Incorporation of dispersion phases into the nickiel matrix increases the degree of surface development of layers. Ni/Al2O3/Cgraphite layers are characterized by high hardness and abrasion resistance by friction, furthermore, they provide good corrosion protection for the substrate material.
Go to article

Abstract

The cotton aphid, Aphis gossypii is an economically significant insect pest infesting various important crops and vegetables. The neonicotinoid, acetamiprid was recommended against aphids with excellent results. Resistance emergence and environmental pollution makes acetamiprid a favorable alternative to conventional insecticides. The aims of the present work were to predict acetamiprid resistance risk in A. gossypii, investigate cross resistance to other tested insecticides and explore acetamiprid stability in the absence of selection. A field-collected population from Sharqia governorate, Egypt was selected with acetamiprid. After 16 generations of selection, there was a 22.55-fold increase in LC50 and the realized heritability (h2) of resistance was 0.17. Projected rates of resistance indicated that, if h2 = 0.17 and 50% of the population was killed at each generation, then a tenfold increase in LC50 would be expected in 12.2 generations. If h2 was 0.27 then 7.63 generations would be needed to achieve the same level. In contrast, with h2 of 0.07 it necessitates about 30 generations of selection to reach the same level. Cross resistance studies exhibited that the selected strain showed obvious cross resistance to the other tested neonicotinoid members, moderate cross resistance to alpha-cypermethrin and no cross resistance to pymetrozine. Fortunately, resistance to acetamiprid in the cotton aphid was unstable and resistance reverses the nearby susceptible strain throughout five generations without exposure to acetamiprid. Our results exhibited cotton aphid potential to develop resistance to acetamiprid under continuous selection pressure. The instability of acetamiprid makes A. gossypii amenable to resistance management tactics such as rotation with pymetrozine.
Go to article

Abstract

Widespread opinion holds that calcareous rocks have limited suitability for use in the production of aggregates and stone products having adequate frost resistance. However, some of the rocks, in particular those from earlier geological periods, provide a promising alternative to silicate rocks. The paper presents results of the analysis of Devonian carbonate rock originating from two selected mines in the Swietokrzyskie region. The examined mines extract limestone from two different deposits of the same age. The rock samples are collected from beds lying at different depths, distinct in texture and color in macroscopic examination. It was found that despite the changes in bulk density, porosity and absorption, all the examined samples were frost resistant. Using the Differential Analysis of Volumetric Strain method, the content of ice formed in the pore spaces was determined. In addition, the ratio of the content of water capable of freezing to the total pore volume, and the total amount of water absorbed due to capillary action in rock samples soaked in water, were analyzed. In all cases, it was revealed that the destructive action of freezing water was weakened due to a relatively low content of water capable of freezing and a substantial volume of pores that are not filled with water in capillary absorption. It is extremely important to be able to classify the available rock material. The generally adopted methods, including absorptivity tests, do not allow for precise categorization. In the investigations, the authors focused on the analysis of the basic factors that are decisive for rock durability, including bulk density, pore filling level and volume absorption. The authors do not correspond compressive strength and resistance to abrasion as this will be the subject of further research.
Go to article

Abstract

A thermal resistance characterization of semiconductor quantum-well heterolasers in the AlGaInAs-AlGaAs system (λst ≈ 0.8 μm), GaSb-based laser diodes (λst ≈ 2 μm), and power GaN light-emitting diodes (visible spectral region) was performed. The characterization consists in investigations of transient electrical processes in the diode sources under heating by direct current. The time dependence of the heating temperature of the active region of a source ΔT(t), calculated from direct bias change, is analyzed using a thermal RTCT equivalent circuit (the Foster and Cauer models), where RT is the thermal resistance and CT is the heat capacity of the source elements and external heat sink. By the developed method, thermal resistances of internal elements of the heterolasers and light-emitting diodes are determined. The dominant contribution of a die attach layer to the internal thermal resistance of both heterolaser sources and light-emitting diodes is observed. Based on the performed thermal characterization, the dependence of the optical power efficiency on current for the laser diodes is determined.
Go to article

Abstract

In the paper a new implementation of a compact smart resistive sensor based on a microcontroller with internal ADCs is proposed and analysed. The solution is based only on a (already existing in the system) microcontroller and a simple sensor interface circuit working as a voltage divider consisting of a reference resistor and a resistive sensor connected in parallel with an interference suppression capacitor. The measurement method is based on stimulation of the sensor interface circuit by a single square voltage pulse and on sampling the resulting voltage on the resistive sensor. The proposed solution is illustrated by a complete application of the compact smart resistive sensor used for temperature measurements, based on an 8-bit ATxmega32A4 microcontroller with a 12-bit ADC and a Pt100 resistive sensor. The results of experimental research confirm that the compact smart resistive sensor has 1°C resolution of temperature measurement for the whole range of changes of measured temperatures.
Go to article

Abstract

In the paper selected methods of measuring the thermal resistance of an IGBT (Insulated Gate Bipolar Transistor) are presented and the accuracy of these methods is analysed. The analysis of the measurement error is performed and operating conditions of the considered device, at which each measurement method assures the least measuring error, are pointed out. Theoretical considerations are illustrated with some results of measurements and calculations.
Go to article

Abstract

The paper presents the results of a numerical study devoted to the hydraulic properties of a network of parallel triangular microchannels (hydraulic diameter Dh = 110 um). Previous experimental investigations had revealed that pressure drop through the microchannels system dramatically increases for the Reynolds number exceeding value of 10. The disagreement of the experimental findings with the estimations of flow resistance based on the assumption of fully developed flow were suspected to result from the so-called scale effect. Numerical simulations were performed by using the classical system of flow equations (continuity and Navier-Stokes equations) in order to explain the observed discrepancies. The calculations showed a very good agreement with the experimental results proving that there is no scale effect for the microchannels considered, i.e. the relevance of the constitutive flow model applied was confirmed. It was also clearly indicated that the excessive pressure losses in the high Reynolds number range are due to the secondary flows and separations appearing in several regions of the microchannel system.
Go to article

Abstract

Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.
Go to article

Abstract

For the reliable applications of silver nanowires, AgNW, which is used as a conductive transparent film in electronic devices, the isothermal degradation behaviors of AgNW films with and without overcoating were investigated. Accelerated isothermal degradation was performed as a function of temperature, time, and atmosphere. Electrical resistance and optical transmittance were measured and correlated with the microstructural damages, such as formation of oxide particles and fragmentations of AgNW, which were quantitatively determined from the scanning electron micrographs. The overcoating retarded the formation of oxide particles and subsequent fragmentations as well as resulting degradation in electrical resistance without affecting the optical transmittance.
Go to article

Abstract

The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37°C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thickness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The observed fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications.
Go to article

This page uses 'cookies'. Learn more