## Search results

### Search results

Number of results: 3
items per page: 25 50 75
Sort by:

## Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes

### Abstract

The paper presents a one-dimensional mathematical model for simulating the transient processes which occur in the liquid flat-plate solar collector tubes. The proposed method considers the model of collector tube as one with distributed parameters. In the suggested method one tube of the collector is taken into consideration. In this model the boundary conditions can be time-dependent. The proposed model is based on solving the equation describing the energy conservation on the fluid side. The temperature of the collector tube wall is determined from the equation of transient heat conduction. The derived differential equations are solved using the implicit finite difference method of iterative character. All thermo-physical properties of the operating fluid and the material of the tube wall can be computed in real time. The time-spatial heat transfer coefficient at the working fluid side can be also computed on-line. The proposed model is suitable for collectors working in a parallel or serpentine tube arrangement. As an illustration of accuracy and effectiveness of the suggested method the computational verification was carried out. It consists in comparing the results found using the presented method with results of available analytic solutions for transient operating conditions. Two numerical analyses were performed: for the tube with temperature step function of the fluid at the inlet and for the tube with heat flux step function on the outer surface. In both cases the conformity of results was very good. It should be noted, that in real conditions such rapid changes of the fluid temperature and the heat flux of solar radiation, as it was assumed in the presented computational verification, do not occur. The paper presents the first part of the study, which aim is to develop a mathematical model for simulating the transient processes which occur in liquid flat-plate solar collectors. The experimental verification of the method is a second part of the study and is not presented in this paper. In order to perform this verification, the mathematical model would be completed with additional energy conservation equations. The experimental verification will be carry out in the close future.
Go to article

## Experiments and FE Analyses on Airborne Sound Properties of Composite Structural Insulated Panels

### Abstract

Airborne acoustic properties of composite structural insulated panels CSIPs composed of fibre-magnesium-cement facesheets and expanded polystyrene core were studied. The sound reduction ratings were measured experimentally in an acoustic test laboratory composed of two reverberation chambers. The numerical finite element (FEM) model of an acoustic laboratory available in ABAQUS was used and verified with experimental results. Steady-state and transient FE analyses were performed. The 2D and 3D modelling FE results were compared. Different panel core modifications were numerically tested in order to improve the airborne sound insulation of CSIPs.
Go to article

## Thermomechanical CSM analysis of a superheater tube in transient state

### Abstract

The paper presents a thermomechanical computational solid mechanics analysis (CSM) of a pipe "double omega", used in the steam superheaters in circulating fluidized bed (CFB) boilers. The complex cross-section shape of the "double omega" tubes requires more precise analysis in order to prevent from failure as a result of the excessive temperature and thermal stresses. The results have been obtained using the finite volume method for transient state of superheater. The calculation was carried out for the section of pipe made of low-alloy steel.
Go to article