Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

A method of detecting honeycombing damage in a reinforced concrete beam using the finite element model updating technique was proposed. A control beam and two finite element model srepresenting different severity of damage were constructed using available software and the defect parameters were updated. Analyses were performed on the finite element models to approximate the modal parameters. A datum and a control finite element model to match the datum test beams with honeycombs were prepared. Results from the finite element model were corrected by updating the Young’s modulus and the damage parameters. There was a loss of stiffness of 3% for one case, and a loss of 7% for another. The more severe the damage, the higher the loss of stiffness. There was no significant loss of stiffness by doubling the volume of the honeycombs.
Go to article

Abstract

The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications.
Go to article

This page uses 'cookies'. Learn more