Search results

Filters

  • Journals
  • Date

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

Vibrating plates can be used in Active Noise Control (ANC) applications as active barriers or as secondary sources replacing classical loudspeakers. The system with vibrating plates, especially when nonlinear MFC actuators are used, is nonlinear. The nonlinearity in the system reduces performance of classical feedforward ANC with linear control filters systems, because they cannot cope with harmonics generated by the nonlinearity. The performance of the ANC system can be improved by using nonlinear control filters, such as Artificial Neural Networks or Volterra filters. However, when multiple actuators are mounted on a single plate, which is a common practice to provide effective control of more vibration modes, each actuator should be driven by a dedicated nonlinear control filter. This significantly increases computational complexity of the control algorithm, because adaptation of nonlinear control filters is much more computationally demanding than adaptation of linear FIR filters. This paper presents an ANC system with multiple actuators, which are driven with a single nonlinear filter. To avoid destructive interference of vibrations generated by different actuators the control signal is filtered by appropriate separate linear filters. The control system is experimentally verified and obtained results are reported.
Go to article

Abstract

It is possible to enhance acoustic isolation of the device from the environment by appropriately controlling vibration of a device casing. Sound insulation efficiency of this technique for a rigid casing was confirmed by the authors in previous publications. In this paper, a light-weight casing is investigated, where vibrational couplings between walls are much greater due to lack of a rigid frame. A laboratory setup is described in details. The influence of the cross-paths on successful global noise reduction is considered. Multiple vibration actuators are installed on each of the casing walls. An adaptive control strategy based on the Least Mean Square (LMS) algorithm is used to update control filter parameters. Obtained results are reported, discussed, and conclusions for future research are drawn.
Go to article

Abstract

Vibrating plates have been recently used for a number of active noise control applications. They are resistant to difficult environmental conditions including dust, humidity, and even precipitation. However, their properties significantly depend on temperature. The plate temperature changes, caused by ambient temperature changes or plate heating due to internal friction, result in varying response of the plate, and may make it significantly different than response of a fixed model. Such mismatch may deteriorate performance of an active noise control system or even lead to divergence of a model-based adaptation algorithm. In this paper effects of vibrating plate temperature variation on a feedforward adaptive active noise reduction system with the multichannel Filtered-reference LMS algorithm are examined. For that purpose, a thin aluminum plate is excited with multiple Macro-Fiber Composite actuators. The plate temperature is forced by a set of Peltier cells, what allows for both cooling and heating the plate. The noise is generated at one side of the plate, and a major part of it is transmitted through the plate. The goal of the control system is to reduce sound pressure level at a specified area on the other side of the plate. To guarantee successful operation of the control system in face of plate temperature variation, a gain-scheduling scheme is proposed to support the Filtered-reference LMS algorithm.
Go to article

Abstract

The active noise-reducing casing developed and promoted by the authors in recent publications have multiple advantages over other active noise control methods. When compared to classical solutions, it allows for obtaining global reduction of noise generated by a device enclosed in the casing. Moreover, the system does not require loudspeakers, and much smaller actuators attached to the casing walls are used instead. In turn, when compared to passive casings, the walls can be made thinner, lighter and with much better thermal transfer than sound-absorbing materials. For active noise control a feedforward structure is usually used. However, it requires an in-advance reference signal, which can be difficult to be acquired for some applications. Fortunately, usually the dominant noise components are due to rotational operations of the enclosed device parts, and thus they are tonal and multitonal. Therefore, it can be adequately predicted and the Internal Model Control structure can be used to benefit from algorithms well developed for feedforward systems. The authors have already tested that approach for a rigid casing, where interaction of the walls was significantly reduced. In this paper the idea is further explored and applied for a light-weight casing, more frequently met in practice, where each vibrating wall of the casing influences all the other walls. The system is verified in laboratory experiments.
Go to article

Abstract

Passive noise reduction means are commonly used to reduce noise in the industry but, unfortunately, their effectiveness is poor in the low frequency range. By applying active structural acoustic control to the enclosure walls significant improvement of the insulating properties in this frequency range can be achieved. In this paper a model of double panel structure with ASAC is presented. The structure consists of two aluminium plates separated by an air gap. Two inertial magnetoelectric actuators and two piezoceramic MFC sensors were used for controlling the structure. A multichannel FxLMS algorithm with virtual error microphone technique is used as a control algorithm. The signal of a virtual error microphone is extrapolated basing on signals from MFC sensors. Performance of this actively controlled structure for tonal signals at selected frequencies is presented in the article. During the study, a double panel structure was mounted on one wall of sound insulating enclosure located in an acoustic chamber. During the measurements local and global reduction of noise test signal was investigated.
Go to article

Abstract

In the paper the author has described the visualization methods in acoustic flow fields and show how these methods may assist scientists to gain understanding of complex acoustic energy flow in real-life field. A graphical method will be presented to determine the real acoustic wave distribution in the flow field. Visualization of research results, which is unavailable by conventional acoustics metrology, may be shown in the form of intensity streamlines in space, as a shape of floating acoustic wave and intensity isosurface in three-dimensional space. In traditional acoustic metrology, the analysis of acoustic fields concerns only the distribution of pressure levels (scalar variable), however in a real acoustic field both the scalar (acoustic pressure) and vector (the acoustic particle velocity) effects are closely related. Only when the acoustic field is described by both the potential and kinetic energies, we may understand the mechanisms of propagation, diffraction and scattering of acoustic waves on obstacles, as a form of energy image. This attribute of intensity method can also validate the results of CFD/CAA numerical modeling which is very important in any industry acoustic investigations.
Go to article

Abstract

During operation, construction machines generate high noise levels which can adversely affect the health and the job performance of operators. The noise control techniques currently applied to reduce the noise transmitted into the operator cab are all based on the decrease of the sound pressure level. Merely reducing this noise parameter may be suitable for the compliance with the legislative requirements but, unfortunately, it is not sufficient to improve the subjective human response to noise. The absolute necessity to guarantee comfortable and safe conditions for workers, requires a change of perspective and the identification of different noise control criteria able to combine the reduction of noise levels with that of psychophysical descriptors representing those noise attributes related to the subjective acoustical discomfort. This paper presents the results of a study concerning the “customization” of a methodology based on Sound Quality for the noise control of construction machines. The purpose is to define new hearing-related criteria for the noise control able to guarantee not only reduced noise levels at the operator position but also a reduced annoyance perception.
Go to article

Abstract

The assessment of the uncertainty of measurement results, an essential problem in environmental acoustic investigations, is undertaken in the paper. An attention is drawn to the - usually omitted - problem of the verification of assumptions related to using the classic methods of the confidence intervals estimation, for the controlled measuring quantity. Especially the paper directs attention to the need of the verification of the assumption of the normal distribution of the measuring quantity set, being the base for the existing and binding procedures of the acoustic measurements assessment uncertainty. The essence of the undertaken problem concerns the binding legal and standard acts related to acoustic measurements and recommended in: 'Guide to the expression of uncertainty in measurement' (GUM) (OIML 1993), developed under the aegis of the International Bureau of Measures (BIPM). The model legitimacy of the hypothesis of the normal distribution of the measuring quantity set in acoustic measurements is discussed and supplemented by testing its likelihood on the environment acoustic results. The Jarque-Bery test based on skewness and flattening (curtosis) distribution measures was used for the analysis of results verifying the assumption. This test allows for the simultaneous analysis of the deviation from the normal distribution caused both by its skewness and flattening. The performed experiments concerned analyses of the distribution of sound levels: LD, LE, LN, LDWN, being the basic noise indicators in assessments of the environment acoustic hazards.
Go to article

Abstract

Active Noise Control (ANC) of noise transmitted through a vibrating plate causes many problems not observed in classical ANC using loudspeakers. They are mainly due to vibrations of a not ideally clamped plate and use of nonlinear actuators, like MFC patches. In case of noise transmission though a plate, nonlinerities exist in both primary and secondary paths. Existence of nonlinerities in the system may degrade performance of a linear feedforward control system usually used for ANC. The performance degradation is especially visible for simple deterministic noise, such as tonal noise, where very high reduction is expected. Linear feedforward systems in such cases are unable to cope with higher harmonics generated by the nonlinearities. Moreover, nonlinearities, if not properly tackled with, may cause divergence of an adaptive control system. In this paper a feedforward ANC system reducing sound transmitted through a vibrating plate is presented. The ANC system uses nonlinear control filters to suppress negative effects of nonlinearies in the system. Filtered-error LMS algorithm, found more suitable than usually used Filtered-reference LMS algorithm, is employed for updating parameters of the nonlinear filters. The control system is experimentally verified and obtained results are discussed.
Go to article

Abstract

The linear 3D piezoelasticity theory along with active damping control (ADC) strategy are applied for non-stationary vibroacoustic response suppression of a doubly fluid-loaded functionally graded piezolaminated (FGPM) composite hollow cylinder of infinite length under general time-varying excitations. The control gain parameters are identified and tuned using Genetic Algorithm (GA) with a multi-objective performance index that constrains the key elasto-acoustic system parameters and control voltage. The uncontrolled and controlled time response histories due to a pair of equal and opposite impulsive external point loads are calculated by means of Durbin’s numerical inverse Laplace transform algorithm. Numerical simulations demonstrate the superior (good) performance of the GA-optimized distributed active damping control system in effective attenuation of sound pressure transients radiated into the internal (external) acoustic space for two basic control configurations. Also, some interesting features of the transient fluid-structure interaction control problem are illustrated via proper 2D time domain images and animations of the 3D sound field. Limiting cases are considered and accuracy of the formulation is established with the aid of a commercial finite element package as well as comparisons with the current literature.
Go to article

Abstract

This work focuses on finding a numerical solution for vehicle acoustic studies and improving the usefulness of the numerical experimental parameters for the development stage of a new automotive project. Specifically, this research addresses the importance of modal cavity damping for vehicle exerts during numerical studies. It then seeks to suggest standardized parameter values of modal cavity damping in vehicular acoustic studies. The standardized value of modal cavity damping is of great importance for the study of vehicular acoustics in the automotive industry because it would allow the industry to begin studies of the acoustic performance of a new vehicle early in the conception phase with a reliable estimation that would be close to the final value measured in the design phase. It is common for the automotive industry to achieve good levels of numerical-experimental correlation in acoustic studies after the prototyping phase because this phase can be studied with feedback from the simulation and experimental modal parameters. Thus, this research suggests values for modal cavity damping, which are divided into two parts due to their behaviour: ξ(x) = -0.0126(x − 100) + 6.15 as a variable function to analyse up to 100 Hz and 6.15% of modal cavity damping constant for studies between 30 Hz and 100 Hz. The sequence of this study shows how we arrived at these values.
Go to article

This page uses 'cookies'. Learn more