Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Instantaneous acoustic heating of a viscous fluid flow in a boundary layer is the subject of investigation. The governing equation of acoustic heating is derived by means of a special linear combination of conservation equations in the differential form, which reduces all acoustic terms in the linear part of the final equation but preserves terms belonging to the thermal mode. The procedure of decomposition is valid in a weakly nonlinear flow, it yields the nonlinear terms responsible for the modes interaction. Nonlinear acoustic terms form a source of acoustic heating in the case of the dominative sound. This acoustic source reflects the thermoviscous and dispersive properties of a fluid flow. The method of deriving the governing equations does not need averaging over the sound period, and the final governing dynamic equation of the thermal mode is instantaneous. Some examples of acoustic heating are illustrated and discussed, and conclusions about efficiency of heating caused by different waveforms of sound are made.
Go to article

Abstract

Nonlinear phenomena of the planar and quasi-planar magnetoacoustic waves are considered. We focus on deriving of equations which govern nonlinear excitation of the non-wave motions by the intense sound in initially static gaseous plasma. The plasma is treated as an ideal gas with finite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. This introduces dispersion of a flow. Magnetoacoustic heating and streaming in the field of periodic and aperiodic magnetoacoustic perturbations are discussed, as well as generation of the magnetic perturbations by sound. Two cases, corresponding to magnetosound perturbations of low and high frequencies, are considered in detail.
Go to article

This page uses 'cookies'. Learn more