Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The main purpose of the presented research is to investigate the partial discharge (PD) phenomenon variability under long-term AC voltage with particular consideration of the selected physical quantities changes while measured and registered by the acoustic emission method (AE). During the research a PD model source generating surface discharges is immersed in the brand new insulation mineral oil. Acoustic signals generated by the continuously occurred PDs within 168 hours are registered. Several qualitative and quantitative indicators are assigned to describe the PD variability in time. Furthermore, some longterm characteristics of the applied PD model source in mineral oil, are also presented according to acoustic signals emitted by the PD. Finally, various statistical tools are applied for the results analysis and presentation. Despite there are numerous contemporary research papers dealing with long-term PD analysis, such complementary and multiparametric approach has not been presented so far, regarding the presented research. According to the presented research from among all assigned indicators there are discriminated descriptors that could depend on PD long-term duration. On the grounds of the regression models analysis there are discovered trends that potentially allow to apply the results for modeling of the PD variability in time using the acoustic emission method. Subsequently such an approach may potentially support the development and extend the abilities of the diagnostic tools and maintenance policy in electrical power industry.
Go to article

Abstract

In the paper, the results of investigations on the properties of acoustic emission signals generated in a tested pressure vessel are presented. The investigations were performed by repeating several times the following procedure: an increase in pressure, maintaining a given pressure level, a further increase in pressure, and then maintaining the pressure at new determined level. During the tests the acoustic emission signals were recorded by the measuring system 8AE-PD with piezoelectric sensors D9241A. The used eight-channel measuring system 8AE-PD enables the monitoring, recording and then basic and advanced analysis of signals. The results of basic analysis carried out in domain of time and the results of advanced analysis carried out in the discrimination threshold domain of the recorded acoustic emission signals are presented in the paper. In the framework of the advanced analysis, results are described by the defined by the author descriptors with acronyms ADC, ADP and ADNC. Such description is based on identifying the properties of amplitude distributions of acoustic emission signals by assigning them the level of advancement. It is shown that for signals including continoues AE or single burst AE signals descriptions of such registered signals by means of ADC, ADP and ADNC descriptors and by Upp and Urms descriptors provide identical ordering of registered acoustic emission signals. For complex signals, the description using ADC, ADP and ADNC descriptors based on the analysis of amplitude distributions of recorded signals gives the order of signals with more accurate connection with deformational processes being sources of acoustic emission signals.
Go to article

Abstract

The assessment of teachers' exposure to noise in primary schools was carried out on the basis of: questionnaire studies (covering 187 teachers in 3 schools), noise measurements at the teachers' workplaces, measurements of the school rooms acoustic properties (reverberation time and speech transmission index STI in 72 classrooms), analysis of statistical data regarding hazards and occupational diseases in the education sector. The studies have shown that noise is the main factor of annoyance in the school environment. Over 50% of questioned teachers consider noise as annoying and near 40% as very annoying or unbearable. A-weighted equivalent continuous sound pressure levels measured in classrooms, teacher rooms and common rooms are in the range of 58-80 dB and they exceed 55 dB (criteria of noise annoyance). The most frequently reported subjective feelings and complaints (over 90%) are: growth of psychical and emotional tension, irritation, difficulties in concentrating, hoarseness, cough. Noise in schools is also a harmful factor. High A-weighted equivalent continuous sound pressure levels ranging from 80 to 85 dB, measured in corridors during pauses and in sports halls, can cause the risk of hearing damage among PE teachers and persons oversensitive to noise. The latter concerns both teachers and pupils. High background noise levels (55-65 dB) force teachers to raise their voice. It can lead to the development of an occupational disease - chronic voice disorders due to excessive vocal effort lasting for at least 15 years. In the education sector 785 new cases of this disease were reported only in 2008. Poor acoustics in classrooms (reverberation time ranging from 0.8 to 1.7 s, STI < 0.6 in 50% of classrooms) have an adverse influence on speech reception and make the teaching and learning processes difficult.
Go to article

This page uses 'cookies'. Learn more