Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The solution of applications for air pollution control in foundries for iron and non-ferrous metals may not only be understood as the observance of requested emission limit values at the stack outlet. An effective environmental protection already starts with the greatest possible capture of pollutants at the source with at the same time minimisation of the volume flow necessary for this. Independent of this, the downstream installed filtration system has to realise a degree of separation of definitely above 99%. Furthermore, when selecting the filter construction, attention has to be paid to a high availability. An even temporarily production without filter will more and more no longer be accepted by residents and authorities. Incidents at the filter lead to a shutdown of the whole production. Additional measures for heat recovery while preparing concepts for filtration plants help to reduce the energy consumption and serve for a sustained conservation of environment. A consequent consideration of the items above is also condition for the fact that environmental protection in foundries remains affordable. The lecture deals with the subjects above from the point of view of a plant constructor.
Go to article

Abstract

The absorption of sound in air represents one of the main problems of the scale model measurements. This absorption, especially at higher frequencies, is considerably greater than the value determined by the law of acoustical similarity between the full scale and the scale model. Different alternatives are applied for compensation of the excess air absorption including a numerical compensation. In this paper, a modified approach to numerical compensation is proposed. It is based on compensation of the sound decay only, and not background noise. As a consequence, there is no an increase of background noise in the compensated impulse response. The results obtained by the proposed procedure are compared to the corresponding ones obtained by the other procedures.
Go to article

Abstract

The installations of CO2 capture from flue gases using chemical absorption require a supply of large amounts of heat into the system. The most common heating medium is steam extracted from the cycle, which results in a decrease in the power unit efficiency. The use of heat needed for the desorption process from another source could be an option for this configuration. The paper presents an application of gas-air systems for the generation of extra amounts of energy and heat. Gas-air systems, referred to as the air bottoming cycle (ABC), are composed of a gas turbine powered by natural gas, air compressor and air turbine coupled to the system by means of a heat exchanger. Example configurations of gas-air systems are presented. The efficiency and power values, as well as heat fluxes of the systems under consideration are determined. For comparison purposes, the results of modelling a system consisting of a gas turbine and a regenerative exchanger are presented.
Go to article

This page uses 'cookies'. Learn more