Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The paper presents the results of studies on quartzite milling in a ball mill. The milling was conducted in a batch system, for diversified compositions of balls. The milling product was subjected to granulometrical, morphological and strength analyses. On the basis of the developed Reid's theory and using the Austin-Gardner equation, a form of the function circumscribing the specific rate of comminution of selected size fractions was determined. The values of the breakage rate function bi, j for the mill's apparatus conditions were determined. The impact was investigated for a variable number of grinding media contact points on the values of specific rate S and the values of the breakage rate function bi, j. Furthermore, the values of coefficients occurring in the equations circumscribing the specific rate of milling S and breakage parameter bi, j were determined.
Go to article

Abstract

The article concerns investigations over benefits of application of HRC devices into sulphide copper ore processing plant. High pressure comminution appears to be very effective technology in hard ore processing circuits, especially in terms of energy consumption. This can be particularly observed in downstream grinding and beneficiation operations. A series of pilot-scale crushing tests in HRC roller press for various levels of operating pressure, were performed. HRC crushing effectiveness along with downstream grinding process course for each crushing product were also under analysis. The investigations were supplemented by analysis of flotation process effectiveness and impact of the process of high-pressure comminution on environment (dust emission). The results of investigation show that operating pressure level influences the obtained comminution results (comminution degree, yield of finest particle size fractions). The grinding effectiveness, measured through production of the finest particle size fractions was significantly influenced by the operating pressure. The results show that higher values of operating pressure (4.0 and 4.5 N/mm2) are not as efficient within this scope as the pressure 3.5 N/mm2. Dust emission is also correlated with the operating pressure value.
Go to article

Abstract

Ball-shaped concretions ("cannon balls") commonly occur in a marine, organic carbon-rich sedimentary sequence (Innkjegla Member) of the Carolinefjellet Formation (AptianAlbian) in Spitsbergen. The sedimentologic, petrographic and geochemical investigation of these concretions in the Kapp Morton section at Van Mijenfjorden gives insight into their origin and diagenetic evolution. The concretion bodies commenced to form in subsurface environment in the upper part of the sulphate reduction (SR) diagenetic zone. They resulted from pervasive cementation of uncompacted sediment enriched in framboidal pyrite by non-ferroan (up to 2 mol% FeCO3) calcite microspar at local sites of enhanced decomposition of organic matter. Bacterial oxidation of organic matter provided most of carbon dioxide necessary for concretionary calcite precipitation (δ13CCaCO3 ≈ -21%VPDB). Perfect ball-like shapes of the concretions originated at this stage, reflecting isotropic permeability of uncompacted sediment. The concretion bodies cracked under continuous burial as a result of amplification of stress around concretions in a more plastic sediment. The crack systems were filled by non-ferroan (up to 5 mol% FeCO3) calcite spar and blocky pyrite in deeper parts of the SR-zone. This cementation was associated with impregnation of parts of the concretion bodies with microgranular pyrite. Bacterial oxidation of organic matter was still the major source of carbon dioxide for crack-filling calcite precipitation (δ13CCaCO3 ≈ -19% VPDB). At this stage, the cannon-ball concretions attained their final shape and texture. Subsequent stages of concretion evolution involved burial cementation of rudimentary pore space with carbonate minerals (dolomite/ankerite, siderite, calcite) under increased temperature (δ18OCa,Mg,FeCO3 ≈-14% VPDB). Carbon dioxide for mineral precipitation was derived from thermal degradation of organic matter and from dissolution of skeletal carbonates (δ13CCa,Mg,FeCO3≈ - 8‰ VPDB). Kaolinite cement precipitated as the last diagenetic mineral, most probably during post−Early Cretaceous uplift of the sequence.
Go to article

Abstract

Flowability of fine, highly cohesive calcium carbonate powder was improved using high energy mixing (dry coating) method consisting in coating of CaCO3 particles with a small amount of Aerosil nanoparticles in a planetary ball mill. As measures of flowability the angle of repose and compressibility index were used. As process variables the mixing speed, mixing time, and the amount of Aerosil and amount of isopropanol were chosen. To obtain optimal values of the process variables, a Response Surface Methodology (RSM) based on Central Composite Rotatable Design (CCRD) was applied. To match the RSM requirements it was necessary to perform a total of 31 experimental tests needed to complete mathematical model equations. The equations that are second-order response functions representing the angle of repose and compressibility index were expressed as functions of all the process variables. Predicted values of the responses were found to be in a good agreement with experimental values. The models were presented as 3-D response surface plots from which the optimal values of the process variables could be correctly assigned. The proposed, mechanochemical method of powder treatment coupled with response surface methodology is a new, effective approach to flowability of cohesive powder improvement and powder processing optimisation.
Go to article

This page uses 'cookies'. Learn more