Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

In the processes of coal mining, preparation and combustion, the rejects and by-products are generated. These are, among others, the rejects from the coal washing and dry deshaling processes as well as the coal combustion by-products (fly ash and slag). Current legal and industry regulations recommend determining the content of mercury in them. The regulations also define the acceptable content of mercury. The aim of the paper was to determine the mercury content in the rejects derived from the coal cleaning processes as well as in the combustion by-products in respect of their utilization. The mercury content in the representative samples of the rejects derived from the coal washing and dry deshaling processes as well as in the coal combustion by products derived from 8 coal-fired boilers was determined. The mercury content in the rejects from the coal washing process varied from 54 to 245 μg/kg, (the average of 98 μg/kg) and in the rejects from the dry deshaling process it varied from 76 to 310 μg/kg (the average of 148 μg/kg). The mercury content in the fly ash varied from 70 to 1420 μg/kg, (the average of 567 μg/kg) and in the slag it varied from 8 to 58 μg/kg (the average of 21 μg/kg). At the moment, in light of the regulations from the point of view of mercury content in the rejects from the coal preparation processes and in the coal combustion by-products, there are no significant barriers determining the way of their utilization. Nevertheless, in the future, regulations limiting the maximum content of mercury as well as the acceptable amount of leachable mercury may be introduced. Therefore, preparing for this situation by developing other alternative methods of using the rejects and by-products is recommended.
Go to article

Abstract

The paper presents the results of the mechanical, electrical, CCSEM and XRD measurements of hard coal, conducted in simulated conditions of sintering in atmospheres of O2/CO2,. The changes of the coal ash resistivity are correlated with the content of the oxides and with the sintering temperature determined by the mechanical test and Leitz method. The SEM-EDS analysis was conducted for deposits on the probe. The changes of the measured ash samples, observed during sintering process in O2/CO2 atmosphere, were discussed in the ash microstructure point of view.
Go to article

Abstract

The paper presents results of coal behaviour during combustion in oxy-fuel atmosphere. The experiment was performed using 3 meter long Entrained Flow Reactor and 1 meter long Drop Tube Reactor. Three hard coals and two lignites were analysed in order to investigate NOx, SO2 emission and fly ash burnout. The measurements were performed along and at the outlet of a combustion chamber for one- and two - stage combustion. In the second stage of the experiment, kinetic parameters for nitrogen evolution during combustion in oxy - fuel and air were calculated and the division of nitrogen into the volatile matter and the char was measured. The conducted experiment showed that emissions in oxy - fuel are lower than those in air.
Go to article

Abstract

Trace metal composition of snowpack, snow-melt filter residues and top-soils were determined along transects through industrial towns in the Usa River Basin: Inta, Usinsk and Vorkuta. Elevated concentrations of deposition elements and pH in snow and soils associated with alkaline coal ash within 25-40 km of Vorkuta and Inta were found. Atmospheric deposition in the vicinity of Vorkuta and Inta, added significantly to the soil contaminant loading as a result of ash fallout. The element concentrations in soils within 20-30 km of Vorkuta do not reflect current deposition rates, but instead, reflect an historical pollution legacy, when coal mining activity peaked in the 1960s. There is little evidence of anthropogenic metal deposition around the gas and oil town of Usinsk.
Go to article

Abstract

Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
Go to article

Abstract

In this work problems associated with requirements related to pollution emissions in compliance with more restrictive standards, low-emission combustion technology, technical realization of the monitoring system as well as algorithms allowing combustion process diagnostics are discussed. Results of semi-industrial laboratory facility and industrial (power station) research are presented as well as the possibility of application of information obtained from the optical fibre monitoring system for combustion process control. Moreover, directions of further research aimed to limit combustion process environmental negative effects are presented.
Go to article

Abstract

Combustion technology of the coal-water suspension creates a number of new possibilities to organize the combustion process fulfilling contemporary requirements, e.g. in the environment protection. Therefore the in-depth analysis is necessary to examine the technical application of coal as a fuel in the form of suspension. The research undertakes the complex investigations of the continuous coal-water suspension as well as cyclic combustion. The cyclic nature of fuel combustion results from the movement of the loose material in the flow contour of the circulating fluidized bed (CFB): combustion chamber, cyclone and downcomer. The experimental results proved that the cyclic change of oxygen concentration around fuel, led to the vital change of both combustion mechanisms and combustion kinetics. The mathematical model of the process of fuel combustion has been presented. Its original concept is based on the allowance for cyclic changes of concentrations of oxygen around the fuel. It enables the prognosis for change of the surface and the centre temperatures as well as mass loss of the fuel during combustion in air, in the fluidized bed and during the cyclic combustion.
Go to article

Abstract

The paper describes the results of various actions and industrial tests conducted in order to decrease the content of unburned carbon in the fly ash of a circulating fluidised bed combustor (CFBC). Several attempts to improve the situation were made and the effects of several parameters on the unburned carbon content in the fly ash were investigated (e.g. bed temperature, cyclone separation efficiency, fuel particle size distribution, boiler hydrodynamics, grid design, and fuel data). Unfortunately, no satisfactory solution to these problems was found. Probably, apart from attrition and char fragmentation, additional factors also contributed to the formation of unburned carbon in the CFBC fly ash.
Go to article

Abstract

The paper presents current reports on kinetics and mechanisms of reactions with mercury which take place in the exhaust gases, discharged from the processes of combustion of solid fuels (coals). The three main stages were considered. The first one, when thermal decomposition of Hg components takes place together with formation of elemental mercury (Hg0). The second one with homogeneous oxidation of Hg0 to Hg2+ by other active components of exhaust gases (e.g. HCl). The third one with heterogeneous reactions of gaseous mercury (the both - elemental and oxidised Hg) and solid particles of fl y ash, leading to generation of particulate-bound mercury (Hgp). Influence of exhaust components and their concentrations, temperature and retention time on the efficiency of mercury oxidation was determined. The issues concerning physical (gas-solid) and chemical speciation of mercury (fractionation Hg0-Hg2+) as well as factors which have influence on the mercury speciation in exhaust gases are discussed in detail.
Go to article

Abstract

Trace elements contained in coal escape with flue gas from energy sources into the air or move towards other components of the environment with by-products captured in electrofilters (EF) and flue gas desulphurisation (FGD) plants. The existing knowledge about the distribution of frequently dangerous trace elements contained in these products is insufficient. Studies were therefore undertaken in selected power plants to investigate the distribution of trace elements in coal, slag, as well as dust containment and flue gas desulphurisation products, such as fly ash captured in dust collectors, desulphurisation gypsum and semi-dry scrubbing FGD products. Using the technique of flame atomic absorption spectrometry (F-AAS) and mercury analyser, the following were determined in the research material samples: Cr, Cu, Hg, Mn, Ni, Pb and Zn. The studies have a reconnaissance character. The authors have presented the results of determinations for selected trace elements in samples taken at Jaworzno III and Siersza Power Plants, which burn hard coal, and in Bełchatów Power Plant, burning brown coal. A balance of the examined trace elements in a stream of coal fed into the boiler and in streams of waste and products carried away from the plant was prepared. The balance based on the results of analyses from Bełchatów Power Plant was considered encouraging enough to undertake further investigations. The research confirmed that due to the distribution in the process of coal combustion and flue gas treatment, a dominant part of particular trace elements’ stream moves with solid waste and products, while air emission is marginal. Attention was paid to the importance of research preparation, the manner of sample taking and selection of analytical methods.
Go to article

Abstract

The aim of the paper is the petrographic characterization of coal from the Wieczorek mine and the residues after its gasification. The coal was subjected to gasification in a fluidized bed reactor at a temperature of about 900°C and in an atmosphere of oxygen and CO2. The petrographic, proximate, and ultimate analysis of coal and char was performed. The petrographic composition of bituminous coal is dominated by macerals of the vitrinite group (55% by volume); macerals of inertinite and liptinite groups account for 23% and 16.0%, respectively. In the examined char, the dominant component is inertoid (41% vol.). Mixed dense and mixed porous account for 10.9% and 13.5% vol., respectively. In addition, the examined char also contained unreacted particles such as fusinoids, solids (11.3% vol.), and mineroids (5.1% vol.). The char contains around 65% vol. of low porosity components, which indicates a low degree of carbon conversion and is associated with a low gasification temperature. The char was burned and the resulting bottom and fly ashes were subjected to petrographic analysis. Their composition was compared with the composition of ashes from the combustion of bituminous coal from the Wieczorek mine. Bottom ashes resulting from the combustion of bituminous coal and char did not differ significantly in the petrographic composition. The dominant component was mineroid, which accounted for over 80% vol. When it comes to fly ash, a larger amount of particles with high porosity is observed in fly ash from bituminous coal combustion.
Go to article

Abstract

The paper examines from the thermodynamic point of view operation of coal fired power unit cooperating with the cryogenic oxygen unit, with a particular emphasis on the characteristic performance parameters of the oxygen unit. The relatively high purity technical oxygen produced in the oxygen unit is then used as the oxidant in the fluidized bed boiler of the modern coal fired power unit with electric power output of approximately 460 MW. The analyzed oxygen unit has a classical two-column structure with an expansion turbine (turboexpander), which allows the use of relatively low pressure initially compressed air. Multivariant calculations were performed, the main result being the loss of power and efficiency of the unit due to the need to ensure adequate driving power to the compressor system of the oxygen generating plant.
Go to article

Abstract

Industrial utilization of fly ash from various kinds of fuel plays an important role in the envi-ronmentally clean and cost effective power production. The primary market for fly ash utilizationis as a pozzolanic addition in concrete production. The paper concerns the concretes containingfly ash called Fly Ash from Biomass (FAB) from co-combustion of hard coal and wood biomass(wood chips). Characterization of the fly ash was carried on by means of X-ray diffractometryand E-SEM/EDS analysis. The results of laboratory studies undertaken to evaluate the influence of FAB on concrete resistance to surface scaling due to cyclic freezing and thawing in the presenceof NaCl solution were presented. The tests were carried out for concretes containing up to 25% offly ash related to cement mass. Additionally, the microstructure of air-voids was described. It was concluded that the FAB has significant effect on concrete freeze/thaw durability. The re-placement of cement by fly ash from co-combustion progressively transformed the concrete mi-crostructure into less resistant against freeze/thaw cycles and excessive dosage (over 15%) maydangerously increase the scaling.
Go to article

Abstract

A forecast of the negative impact exerted on the environment by selected trace elements in “Bełchatów” Power Plant has been prepared on the basis of the results of investigations into these elements’ distribution carried out as part of earlier research on coal from “Bełchatów” Field and the data on updated analyses of the content of these elements in 55 brown coal samples from test boreholes. Work in “Bełchatów” Power Plant, which is supplied with coal from “Szczerców” Field, will be accompanied by trace elements transfer. On the basis of the conducted investigations it has been found that the biosphere is most threatened by mercury emissions. As shown by the presented results of analyses and calculations, the emissions of mercury in “Bełchatów” Power Plant are low. Mercury is accumulated chiefl y in gypsum produced in the FGD plant. The content of mercury in slag and ash is low.
Go to article

This page uses 'cookies'. Learn more