Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The paper describes the results of various actions and industrial tests conducted in order to decrease the content of unburned carbon in the fly ash of a circulating fluidised bed combustor (CFBC). Several attempts to improve the situation were made and the effects of several parameters on the unburned carbon content in the fly ash were investigated (e.g. bed temperature, cyclone separation efficiency, fuel particle size distribution, boiler hydrodynamics, grid design, and fuel data). Unfortunately, no satisfactory solution to these problems was found. Probably, apart from attrition and char fragmentation, additional factors also contributed to the formation of unburned carbon in the CFBC fly ash.
Go to article

Abstract

The study investigates chemical modifications of coal fly ash (FA) treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II) and Pb(II) ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K) and pH (2 - 11) values. The maximum Cd(II) and Pb(II) ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS) and images of scanning electron microscope (SEM). The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II) and Pb(II) ion uptake from polluted waters.
Go to article

Abstract

The aim of the paper is the petrographic characterization of coal from the Wieczorek mine and the residues after its gasification. The coal was subjected to gasification in a fluidized bed reactor at a temperature of about 900°C and in an atmosphere of oxygen and CO2. The petrographic, proximate, and ultimate analysis of coal and char was performed. The petrographic composition of bituminous coal is dominated by macerals of the vitrinite group (55% by volume); macerals of inertinite and liptinite groups account for 23% and 16.0%, respectively. In the examined char, the dominant component is inertoid (41% vol.). Mixed dense and mixed porous account for 10.9% and 13.5% vol., respectively. In addition, the examined char also contained unreacted particles such as fusinoids, solids (11.3% vol.), and mineroids (5.1% vol.). The char contains around 65% vol. of low porosity components, which indicates a low degree of carbon conversion and is associated with a low gasification temperature. The char was burned and the resulting bottom and fly ashes were subjected to petrographic analysis. Their composition was compared with the composition of ashes from the combustion of bituminous coal from the Wieczorek mine. Bottom ashes resulting from the combustion of bituminous coal and char did not differ significantly in the petrographic composition. The dominant component was mineroid, which accounted for over 80% vol. When it comes to fly ash, a larger amount of particles with high porosity is observed in fly ash from bituminous coal combustion.
Go to article

Abstract

Industrial utilization of fly ash from various kinds of fuel plays an important role in the envi-ronmentally clean and cost effective power production. The primary market for fly ash utilizationis as a pozzolanic addition in concrete production. The paper concerns the concretes containingfly ash called Fly Ash from Biomass (FAB) from co-combustion of hard coal and wood biomass(wood chips). Characterization of the fly ash was carried on by means of X-ray diffractometryand E-SEM/EDS analysis. The results of laboratory studies undertaken to evaluate the influence of FAB on concrete resistance to surface scaling due to cyclic freezing and thawing in the presenceof NaCl solution were presented. The tests were carried out for concretes containing up to 25% offly ash related to cement mass. Additionally, the microstructure of air-voids was described. It was concluded that the FAB has significant effect on concrete freeze/thaw durability. The re-placement of cement by fly ash from co-combustion progressively transformed the concrete mi-crostructure into less resistant against freeze/thaw cycles and excessive dosage (over 15%) maydangerously increase the scaling.
Go to article

Abstract

A laboratory study was performed to study the effects of various operating factors, viz. adsorbent dose, contact time, solution pH, stirring speed, initial concentration and temperature on the adsorption of triphenyltin chloride (TPT) onto coal fly ash supported nZnO (CFAZ). The adsorption capacity increases with increase in the adsorbent amount, contact time, pH, stirring speed and initial TPT concentration, and decrease with increase in the solution temperature. The adsorption data have been analyzed by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) adsorption models to determine the mechanistic parameters associated with the adsorption process while the kinetic data were analyzed by pseudo first-order, pseudo second-order, Elovich, fractional power and intraparticle diffusivity kinetic models. The thermodynamic parameters of the process were also determined. The results of this study show that 0.5 g of CFAZ was able to remove up to 99.60% of TPT from contaminated natural seawater at 60 min contact time, stirring speed of 200 rpm and at a pH of 8. It was also found that the equilibrium and kinetic data fitted better to Freundlich and pseudo second-order models, respectively. It can therefore be concluded that CFAZ can be effectively used for shipyard process wastewater treatment
Go to article

This page uses 'cookies'. Learn more