Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The first step towards condition based maintenance of the milling plant is the implementation of online condition monitoring of the mill. The following paper presents and analyses methods of monitoring the key performance factors of a vertical spindle mill that is suited for implementation on older power stations, i.e. the quantity (mass flow rate) and quality (particle fineness) of the pulverised fuel produced by the mill. It is shown herein that the mill throughput can be monitored on-line using a simple mill energy balance that successfully predicts the coal throughput within 2.33% as compared to a calibrated coal feeder. A sensitivity analysis reveals that the coal moisture is a critical measurement for this method to be adopted as an on-line mass flow monitoring tool. A laser based particle size analyser tool was tested for use in the power plant environment as an online monitoring solution to measure pulverised fuel fineness. It was revealed that several factors around the set-up and operation of the instrument have an influence on the perceived results. Although the instrument showed good precision and repeatability of results, these factors must be taken into account in order to improve the accuracy of the reported results before the instrument can be commissioned as an on-line monitoring solution.
Go to article

Abstract

Wind turbines are nowadays one of the most promising energy sources. Every year, the amount of energy produced from the wind grows steadily. Investors demand turbine manufacturers to produce bigger, more efficient and robust units. These requirements resulted in fast development of condition-monitoring methods. However, significant sizes and varying operational conditions can make diagnostics of the wind turbines very challenging. The paper shows the case study of a wind turbine that had suffered a serious rolling element bearing (REB) fault. The authors compare several methods for early detection of symptoms of the failure. The paper compares standard methods based on spectral analysis and a number of novel methods based on narrowband envelope analysis, kurtosis and cyclostationarity approach. The very important problem of proper configuration of the methods is addressed as well. It is well known that every method requires setting of several parameters. In the industrial practice, configuration should be as standard and simple as possible. The paper discusses configuration parameters of investigated methods and their sensitivity to configuration uncertainties
Go to article

Abstract

In recent times, the concept of hard turning has gained awareness in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard, wear-resistant steel parts. The major apprehension in hard turning is the tool vibration, which affects the surface finish of the work piece, has to be controlled and monitored. In order to control tool vibration in metal cutting, a magnetorheological fluid damper which has received great attention in suppressing tool vibration was developed and used. Also an attempt has been made in this study to monitor tool vibration using the skewness and kurtosis parameters of acoustic emission (AE) signal for the tool holder with and without magnetorheological damper. Cutting experiments were conducted to arrive at a set of operating parameters that can offer better damping characteristics to minimize tool vibration during turning of AISI4340 steel of 46 HRC using hard metal insert with sculptured rake face. From the results, it was observed that the presence of magnetorheological damper during hard turning reduces tool vibration and there exist a strong relationship between tool vibration and acoustic emission (AERMS) signals to monitor tool condition. This work provides momentous understanding on the usage of magnetorheological damper and AE sensor to control and monitor the tool condition during turning of hardened AISI4340 steel.
Go to article

This page uses 'cookies'. Learn more