Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:

Abstract

As a machining technology, welding can cause serious accidents by overloading or operation mistakes. Through analyzing the causes of various welding accidents, we found that the major cause for damage imposed after welding parts are loaded is the fracture of materials. Therefore, studying the influence of welding residual stress on the fracture property of materials is of great significance. This paper applied the digital image correlation technique to study the fracture property of welding parts under the influence of welding residual stress. In addition, standard parts and welding parts were selected to carry out a contrast experiment. Room temperature tensile tests were performed on both standard parts and test pieces after residual stress measurement. Using displacement field and strain field data obtained through VIC-2D software, the stress intensity factor around the crack tip of each specimen under the conditions of small load was calculated and corresponding analysis was carried out.
Go to article

Abstract

The purpose of this article is to present the preparation of Project Risk Assessment Methodology and its mitigation in complex construction projects. The main text provides a summary of the approach, the method used and the findings. The conclusions have been drawn that the proper tools for quantifying risks have to be based on the criteria specific for mathematical statistic and probability or at least fuzziness. Function, which makes possible to categorize any risks into one of the five categories, is a combination of probability and the impact on one of the items: people and their safety or budget, cost, schedule and planning or quality and performance. An attempt was made to express numerically the relationship between risks impacts and their level of likelihood. Also, a method of associating the influence of projects risks impacts on the extent of the likelihood of project risk occurrence which makes possible to determine the direction and the strength of this relationship was presented.
Go to article

Abstract

The correlation-regression method, as one of the indirect sampling methods, is only sporadically used in geological and mining activities. Theoretically, it should be particularly useful for predicting the content of some chemical components in limestone and marl deposits due to the correlation between them. The results of simple and multiple correlation and regression analysis for 5 selected components (CaO, SiO2, Al2O3, MgO, and SO3), determined in samples from exploratory boreholes and blast holes carried out in the Barcin-Piechcin-Pakość deposit, are presented in the article. The determination coefficients were used as a measure of the correlation power and the quality of the regression models. A very strong linear correlation between CaO and SiO2 content and strong linear correlations between CaO and Al2O3 and SiO2 with Al2O3 have been found. The correlation relationships of the remaining pairs of oxides are weak or very weak and do not provide a basis for prediction of their content based on regression models binding them with the content of other components. The use of nonlinear models for these pairs of oxides results in only a slight improvement in the quality of regression, insignificant from a practical point of view. The application of multiple regression models, linking the content of the mentioned components (with the exception of CaO), leads to similar conclusions. Compared to the determination coefficients of a simple linear correlation, a strong increase in determination coefficients obtained in two cases was found to be artificial and caused by a correlation between the content of the selected components acting as independent variables. From the geological and mining point of view, the results of the analysis indicate the possibility of a fully reliable prediction of SiO2 content and the limited reliability of the Al2O3 content prediction when the CaO content is determined using simple linear regression models.
Go to article

Abstract

The paper presents a spatial distribution of changes of air temperature (T) in the Arctic. Estimates of their spatial relations in the study region were based on a correlation analysis. T in the Arctic is most strongly correlated spatially in winter and spring, and least in summer. The radius of extent of statistically significant correlation coefficients of changes of T at the stations Svalbard Lufthavn, Ostrov Kotelny and Resolute A is equal to 2000-2500 km in winter and 1500-2000 km in summer. An attempt was done to delimit the regions of consistent occurrence of the anomalies T with respect to the signs and magnitudes, as well as of the regions with the most coherent T. The Wroclaw dendrite method was used to solve this problem. Relations of the mean areał T of the climatic regions and of the Arctic as a whole, with the northern hemisphere of temperature and selected climatic factors are presented.
Go to article

Abstract

Bogusław Wolniewicz created an original formal system based on his considerations on the ontology and semantics embedded in Wittgenstein’s Tractatus. His system – called by Wolniewicz ‘ontology of situations’ – can be complemented by a philosophical interpretation. In this article I identify the implicit and intuitive underpinnings of the system, its formal content and its philosophical implications. I also indicate a few applications of the system to axiology and logical hermeneutics.
Go to article

Abstract

A real narrowband noise signal representation in the form of an analytical signal in the Hilbert space is presented in the paper. This analytical signal is illustrated in a variable complex plane as a mark with defined amplitude, phase, pulsation and instantaneous frequency. A block diagram of a broadband product detector in a quadrature system is presented. Measurement results of an autocorrelation function of a noise signal are shown and the application of such solution in a noise radar for precise determination of distance changes as well as velocities of these changes are also presented. Conclusions and future plans for applications of the presented detection technique in broadband noise radars bring the paper to an end.
Go to article

Abstract

Starting from consideration that urban intersections are sites with promise for safety and operational improvements, the paper describes the steps taken to develop a crash predictive model for estimating the safety performance of urban unsignalized intersections located in Palermo, Italy. The focus is on unsignalized four-legged one-way intersections widespread in Italian downtowns. The sample considered in the study consist of 92 intersections in Palermo, Italy. For the study were collected crashes occurred in the sites during the years 2006‒2012, geometric design and functional characteristics and traffic flow. Results showed that data were overdispersed and NB1 distributed. In order to account for the correlation within responses Generalized Estimating Equations (GEE) were used under different working correlation matrices.
Go to article

Abstract

According to Nicolai Hartmann, the correlativistic prejudice is the claim that a being must be a correlate of a subject, and this, he argues, is the main prejudice of Husserl’s phenomenology taken as an eidetic science of transcendental consciousness with its correlates. In contrast to Hartmann, the author of this article claims that Husserl’s conception of the noetic-noematic correlation does not lead to the correlativistic prejudice. Husserl distinguishes between two concepts of object: the noematic ‛object simpliciter’ (the pure X) and the ‛object in the How of its determinations’ (a noematic sense), and he demonstrates that the noematic ‛object simpliciter’ transcends the limit of actual noetic-noematic correlation, it is a correlate of the Idea in the Kantian sense of the term and this idea cannot be intrinsically given in its content. In the article the author shows that Husserl’s concept of the noematic ‘object simpliciter’ as a pure X is similar to Kant’s concept of transcendental object as ‛something in general = X’. In analogy to a transcendental object, noematic ‛object simpliciter’ is partially knowable and it appears to be an irrational fact in its unknowable rest. As a consequence, the ‛object simpliciter’ is something more than a correlate of consciousness and retains always its extra-noematic content. Therefore, the world is only partially correlative to the possibility of experience.
Go to article

Abstract

In this paper, the recent ice regime variations in the Kara Sea have been described and quantified based on the high-resolution remote sensing database from 2003 to 2017. In general, the Kara Sea is fully covered with thicker sea ice in winter, but sea ice cover is continuously declining during the summer. The year 2003 was the year with the most severe ice conditions, while 2012 and 2016 were the least severe. The extensive sea ice begins to break up before May and becomes completely frozen at the end of December again. The duration of ice melting is approximately twice than that of the freezing. Since 2007, the minimum ice coverage has always been below 5%, resulting in wide open-waters in summer. Furthermore, the relevant local driving factors of external atmospheric forcing on ice conditions have been quantitatively calculated and analyzed. Winter accumulated surface air temperature has been playing a primary role on the ice concentration and thickness condition in winter and determining ice coverage index in the following melt-freeze stage. Correlation coefficients between winter accumulated temperature and ice thickness anomaly index, the ice coverage anomaly index, duration of melt-freeze stage can approach -0.72, -0.83 and 0.80, respectively. In summer, meridional winds contribute closely to summer ice coverage anomaly index, with correlation coefficient exceeding 0.80 since 2007 and 0.90 since 2010.
Go to article

Abstract

An original model based on first principles is constructed for the temporal correlation of acoustic waves propagating in random scattering media. The model describes the dynamics of wave fields in a previously unexplored, moderately strong (mesoscopic) scattering regime, intermediate between those of weak scattering, on the one hand, and diffusing waves, on the other. It is shown that by considering the wave vector as a free parameter that can vary at will, one can provide an additional dimension to the data, resulting in a tomographic-type reconstruction of the full space-time dynamics of a complex structure, instead of a plain spectroscopic technique. In Fourier space, the problem is reduced to a spherical mean transform defined for a family of spheres containing the origin, and therefore is easily invertible. The results may be useful in probing the statistical structure of various random media with both spatial and temporal resolution.
Go to article

Abstract

Precise measurement of rail vehicle velocities is an essential prerequisite for the implementation of modern train control systems and the improvement of transportation capacity and logistics. Novel eddy current sensor systems make it possible to estimate velocity by using cross-correlation techniques, which show a decline in precision in areas of high accelerations. This is due to signal distortions within the correlation interval. We propose to overcome these problems by employing algorithms from the field of dynamic programming. In this paper we evaluate the application of correlation optimized warping, an enhanced version of dynamic time warping algorithms, and compare it with the classical algorithm for estimating rail vehicle velocities in areas of high accelerations and decelerations.
Go to article

Abstract

The article presents results of comparative tests performed to verify the conformity of geometric deviation measurements of a crankshaft carried out at a test bed equipped with a system of elastic support with measurements adopted as reference values. A number of simulation tests were carried out with varied shaft support conditions using the proposed measuring system. The selection criteria were established for support parameters. Meeting these criteria guarantees that shaft elastic deflections and strains are eliminated. Consequently, such strains will not affect the estimation of geometrical deviations of the measured object. The comparative evaluation measurement of roundness profiles and values of roundness deviations of main crankshaft bearing journals of a marine medium speed engine was performed using a correlation calculus. The results have revealed high conformity of both determined roundness deviation values and measured profiles compared to the reference ones.
Go to article

Abstract

This paper presents the results of the theoretical and practical analysis of selected features of the function of conditional average value of the absolute value of delayed signal (CAAV). The results obtained with the CAAV method have been compared with the results obtained by method of cross correlation (CCF), which is often used at the measurements of random signal time delay. The paper is divided into five sections. The first is devoted to a short introduction to the subject of the paper. The model of measured stochastic signals is described in Section 2. The fundamentals of time delay estimation using CCF and CAAV are presented in Section 3. The standard deviations of both functions in their extreme points are evaluated and compared. The results of experimental investigations are discussed in Section 4. Computer simulations were used to evaluate the performance of the CAAV and CCF methods. The signal and the noise were Gaussian random variables, produced by a pseudorandom noise generator. The experimental standard deviations of both functions for the chosen signal to noise ratio (SNR) were obtained and compared. All simulation results were averaged for 1000 independent runs. It should be noted that the experimental results were close to the theoretical values. The conclusions and final remarks were included in Section 5. The authors conclude that the CAAV method described in this paper has less standard deviation in the extreme point than CCF and can be applied to time delay measurement of random signals.
Go to article

Abstract

The article presents the issue related with a proper preparation of a data sheet for the analysis, the way of verifying the correctness and reliability of input information, and proper data encoding. Improper input or coding of data can significantly influence the correctness of performed analyses or extend their time. This stage of an analysis is presented by an authorship questionnaire for the study on occupational safety culture in a manufacturing plant, using the Statistica software for analyses. There were used real data, obtained during the research on the issue of occupational safety and factors having the greatest influence on the state of occupational safety.
Go to article

Abstract

The paper deals with pool boiling of water-Al2O3and water-Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.
Go to article

Abstract

The paper presents the modelling measurement results of the load-displacement relation for scaffold stands and bracings. In the case of stands, there are two sections of curves, i.e. a straight-line and curvilinear section, and in the case of bracings, two straight line sections as well as one curvilinear section are distinguished. As a result of analyses, it is concluded that the sections which can be approximated by means of linear functions should be distinguished in graphs, if possible. On the one hand, this results from the evaluation methods of scaffold components. Nevertheless, the determination of elastic-linear scope of components’ operation is useful in engineering practice during computer calculations. Moreover, the method of determining an intersection point between functions, approximating tests results, along with analysis of the impact of polynomial degree, approximating the research results, on the time and effectiveness of the process of approximating functions selection, are all demonstrated in this article. The proposed method can prove useful in all science fields where curves obtained from any research (laboratory test, in situ test, numerical analysis) require approximation or replacement with a simpler description.
Go to article

Abstract

Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.
Go to article

Abstract

This paper presents an innovative method for measuring the time delay of ultrasonic waves. Pulse methods used in the previous studies was characterized by latency. The method of phase correlation, presented in this article is free from this disadvantages. Due to the phase encoding with the use of Walsh functions the presented method allows to obtain better precision than previous methods. The algorithm to measure delay of the reflected wave with the use of microprocessor ARM Cortex M4 linked to a PC has been worked out and tested. This method uses the signal from the ultrasonic probe to precisely determine the time delay, caused by the propagation in medium, possible. In order to verify the effectiveness of the method a part of the measuring system was implemented in LabVIEW. The presented method proved to be effective, as it is shown in presented simulation results.
Go to article

Abstract

The lower (but not lowermost) part of the Upper Cretaceous Anaipadi Formation of the Trichinopoly Group in the area between Kulatur, Saradamangalam and Anaipadi, in the south-western part of the Cauvery Basin in southeast India yielded rich inoceramid and ammonite faunas. The ammonites: Mesopuzosia gaudama (Forbes, 1846), Damesites sugata (Forbes, 1846), Onitschoceras sp., Kossmaticeras (Kossmaticeras) theobaldianum (Stoliczka, 1865), Lewesiceras jimboi (Kossmat, 1898), Placenticeras kaffrarium Etheridge, 1904, and Pseudoxybeloceras (Schlueterella) sp., are characteristic of the Kossmaticeras theobaldianum Zone. The absence of Peroniceras (P.) dravidicum (Kossmat, 1895) indicates the presence of only lower part of this zone, referred to the nominative Kossmaticeras theobaldianum Subzone at the localities studied. The inoceramids present are Tethyoceramus madagascariensis (Heinz, 1933) and Cremnoceramus deformis erectus (Meek, 1877), recorded for the first time from the region. The latter dates the studied interval as early early Coniacian, and allows, for the first time, direct chronostratigraphic dating of the Tethyoceramus madagascariensis Zone, and consequently also of the Kossmaticeras theobaldianum Subzone. As inoceramids occur in the middle part of the ammonite-rich interval, the Kossmaticeras theobaldianum Subzone may be as old as latest Turonian and not younger than early early Coniacian. The base of the Coniacian lies in the lower, but not lowermost part of the Anaipadi Formation. Both inoceramids and ammonites represent taxa known from Madagascar and South Africa.
Go to article

Abstract

Considering the problem to diagnose incipient faults in nonlinear analog circuits, a novel approach based on fractional correlation is proposed and the application of the subband Volterra series is used in this paper. Firstly, the subband Volterra series is calculated from the input and output sequences of the circuit under test (CUT). Then the fractional correlation functions between the fault-free case and the incipient faulty cases of the CUT are derived. Using the feature vectors extracted from the fractional correlation functions, the hidden Markov model (HMM) is trained. Finally, the well-trained HMM is used to accomplish the incipient fault diagnosis. The simulations illustrate the proposed method and show its effectiveness in the incipient fault recognition capability.
Go to article

Abstract

Products of Gaussian noises often emerge as the result of non-linear detection techniques or as parasitic effects, and their proper handling is important in many practical applications, including fluctuation-enhanced sensing, indoor air or environmental quality monitoring, etc. We use Rice’s random phase oscillator formalism to calculate the power density spectra variance for the product of two Gaussian band-limited white noises with zero-mean and the same bandwidth W. The ensuing noise spectrum is found to decrease linearly from zero frequency to 2W, and it is zero for frequencies greater than 2W. Analogous calculations performed for the square of a single Gaussian noise confirm earlier results. The spectrum at non-zero frequencies, and the variance of the square of a noise, is amplified by a factor two as a consequence of correlation effects between frequency products. Our analytic results are corroborated by computer simulations.
Go to article

Abstract

Modern production technology requires new ways of surface examination and a special kind of surface profile parameters. Industrial quality inspection needs to be fast, reliable and inexpensive. In this paper it is shown how stochastic surface examination and its proper parameters could be a solution for many industrial problems not necessarily related with smoothing out a manufactured surface. Burnishing is a modern technology widely used in aircraft and automotive industries to the products as well as to process tools. It gives to the machined surface high smoothness, and good fatigue and wear resistance. Every burnished material behaves in a different manner. Process conditions strongly influence the final properties of any specific product. Optimum burnishing conditions should be preserved for any manufactured product. In this paper we deal with samples made of conventional tool steel – Sverker 21 (X153CrMoV12) and powder metallurgy (P/M) tool steel – Vanadis 6. Complete investigations of product properties are impossible to perform (because of constraints related to their cost, time, or lack of suitable equipment). Looking for a global, all-embracing quality indicator it was found that the correlation function and the frequency analysis of burnished surface give useful information for controlling the manufacturing process and evaluating the product quality. We propose three new indicators of burnishing surface quality. Their properties and usefulness are verified with the laboratory measurement of material samples made of the two mentioned kinds of tool steel.
Go to article

Abstract

This work focuses on finding a numerical solution for vehicle acoustic studies and improving the usefulness of the numerical experimental parameters for the development stage of a new automotive project. Specifically, this research addresses the importance of modal cavity damping for vehicle exerts during numerical studies. It then seeks to suggest standardized parameter values of modal cavity damping in vehicular acoustic studies. The standardized value of modal cavity damping is of great importance for the study of vehicular acoustics in the automotive industry because it would allow the industry to begin studies of the acoustic performance of a new vehicle early in the conception phase with a reliable estimation that would be close to the final value measured in the design phase. It is common for the automotive industry to achieve good levels of numerical-experimental correlation in acoustic studies after the prototyping phase because this phase can be studied with feedback from the simulation and experimental modal parameters. Thus, this research suggests values for modal cavity damping, which are divided into two parts due to their behaviour: ξ(x) = -0.0126(x − 100) + 6.15 as a variable function to analyse up to 100 Hz and 6.15% of modal cavity damping constant for studies between 30 Hz and 100 Hz. The sequence of this study shows how we arrived at these values.
Go to article

Abstract

Small sample properties of unrestricted and restricted canonical correlation estimators of cointegrating vectors for panel vector autoregressive process are considered when the cross-sectional dependencies occur in the process generating nonstationary panel data. It is shown that the unrestricted Box-Tiao estimator is slightly outperformed by the unrestricted Johansen estimator if the dynamic properties of the underlying process are correctly specified. The comparison of performance of the restricted canonical correlation estimator of cointegrating vectors for the panel VAR and for the classical VAR applied independently for each cross-section reveals that the latter performs better in small samples when the cross-sectional dependence is limited to the error terms correlations, even though it is inefficient in the limit, but it falls short in comparison to the former when there are cross-sectional dependencies in the short-run dynamics and/or in the long-run adjustments.
Go to article

This page uses 'cookies'. Learn more