Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Silver nanoparticles (AgNPs) are widely used in numerous industries and areas of daily life, mainly as antimicrobial agents. The particles size is very important, but still not suffi ciently recognized parameter infl uencing the toxicity of nanosilver. The aim of this study was to investigate the cytotoxic effects of AgNPs with different particle size (~ 10, 40 and 100 nm). The study was conducted on both reproductive and pulmonary cells (CHO-9, 15P-1 and RAW264.7). We tested the effects of AgNPs on cell viability, cell membrane integrity, mitochondrial metabolic activity, lipid peroxidation, total oxidative and antioxidative status of cells and oxidative DNA damage. All kinds of AgNPs showed strong cytotoxic activity at low concentrations (2÷13 μg/ml), and caused an overproduction of reactive oxygen species (ROS) at concentrations lower than cytotoxic ones. The ROS being formed in the cells induced oxidative damage of DNA in alkaline comet assay. The most toxic was AgNPs<10 nm. The results indicate that the silver nanoparticles, especially less than 10 nm, may be harmful to the organisms. Therefore, risk should be considered when using nanosilver preparations and provide appropriate protective measures when they are applied.
Go to article

Abstract

Steroidal saponins isolated from many plant species belonging to Monocotyledones display potent cytotoxic activity towards many human tumor cells. We examined the cytotoxic effects of crude Paris quadrifolia extract for the first time, testing isolated saponin-rich fractions against four different human cell lines using the [(3-(4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay. Cytotoxic activity was tested against human promyelocytic leukemia (HL-60) cells, human cervical adenocarcinoma (HeLa) cells and human breast cancer (MDA-MB-468) cells. Human skin fibroblasts were used as non-neoplastic control cells. Our results show significant activity of the weakly water-soluble solid residue and butanolic fraction against HL-60 and HeLa cells. The solid residue exerted cytotoxicity against all tested cell lines.
Go to article

This page uses 'cookies'. Learn more