Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents an evaluation of the Hypoplastic Clay constitutive model for finite element analysis of deep excavations and displacements induced by excavations in the influence zone. A detailed description and formulation of the Hypoplastic Clay soil model is included. A parametric case study of a deep excavation executed in Pliocene clays is presented. FE analysis was performed using several soil models (Mohr-Coulomb, Modified Mohr-Coulomb, Drucker-Prager, Modified Cam-Clay, Hypoplastic Clay) and the results were compared to in-situ displacements measurements taken during construction. Final conclusions concerning the suitability of the Hypoplastic Clay model for deep excavation modelling in terms of accurate determination of horizontal displacements of the excavation wall, the uplift of the bottom of excavation, and, most importantly,vertical displacements of the terrain in the vicinity of the excavation are presented.
Go to article

Abstract

Deep excavation walls can be analyzed and calculated by using classical methods (currently rarely in use due to their many simplifications) or numerical methods. Among the numerical methods we can distinguish a simplified approach, in which the interaction between soil and a wall structure is modelled by a system of elasto-plastic supports, and the finite-element method (FEM) in which the soil is modelled with mesh of elements. It is a common view that if we want to analyze only wall constructions, the first, simplified method of calculation is sufficient. The second method, FEM, is required if we want to further analyze the stress and strain states in the soil and the influence of the excavation on the surrounding area. However, as it is demonstrated in the paper, important differences may appear in the calculation results of both methods. Thus, the safety design of a deep excavation structure depends very much on the choice of calculating method.
Go to article

Abstract

This article describes stability issues of main excavations in deep copper mines in Poland, from the perspective of mining work safety. To protect main transportation and ventilation routes, parts of rock are left untaken to form so-called protective pillars. The problem was to determine the size of main excavations protective pillars in deep underground copper mines in which provide stability of main excavations. The results of numerical simulations of the stability of protective pillars under specific geological and mining conditions are presented, covering: underground depth and width of protective pillar, number, size and layout geometry of protected excavations, as well as the impact of parameters of surrounding gob areas. Problem was solved applying numerical simulations based on the finite element method which were performed in a plane state of strain by means of Phase2 v. 8.0 software. The behavior of the rock mass under load was described by an elastic-plastic model. The Mohr-Coulomb criterion was used to assess the stability of the rock mass. The results of numerical modeling have practical applications in the designing of protective pillars primarily in determining their width. These results were used to prepare new guidelines for protective pillars in Polish copper mines in the Legnica-Glogow Copper District.
Go to article

This page uses 'cookies'. Learn more