Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Speech enhancement is fundamental for various real time speech applications and it is a challenging task in the case of a single channel because practically only one data channel is available. We have proposed a supervised single channel speech enhancement algorithm in this paper based on a deep neural network (DNN) and less aggressive Wiener filtering as additional DNN layer. During the training stage the network learns and predicts the magnitude spectrums of the clean and noise signals from input noisy speech acoustic features. Relative spectral transform-perceptual linear prediction (RASTA-PLP) is used in the proposed method to extract the acoustic features at the frame level. Autoregressive moving average (ARMA) filter is applied to smooth the temporal curves of extracted features. The trained network predicts the coefficients to construct a ratio mask based on mean square error (MSE) objective cost function. The less aggressive Wiener filter is placed as an additional layer on the top of a DNN to produce an enhanced magnitude spectrum. Finally, the noisy speech phase is used to reconstruct the enhanced speech. The experimental results demonstrate that the proposed DNN framework with less aggressive Wiener filtering outperforms the competing speech enhancement methods in terms of the speech quality and intelligibility.
Go to article

Abstract

In recent years, deep learning and especially deep neural networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the convolutional neural networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good generalization abilities. Therefore, a number of methods have been proposed by the researchers to deal with these problems. In this paper, we present the results of applying different, recently developed methods to improve deep neural network training and operating. We decided to focus on the most popular CNN structures, namely on VGG based neural networks: VGG16, VGG11 and proposed by us VGG8. The tests were conducted on a real and very important problem of skin cancer detection. A publicly available dataset of skin lesions was used as a benchmark. We analyzed the influence of applying: dropout, batch normalization, model ensembling, and transfer learning. Moreover, the influence of the type of activation function was checked. In order to increase the objectivity of the results, each of the tested models was trained 6 times and their results were averaged. In addition, in order to mitigate the impact of the selection of learning, test and validation sets, k-fold validation was applied.
Go to article

This page uses 'cookies'. Learn more