Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 52
items per page: 25 50 75
Sort by:

Abstract

Coal mining activities carried out for 200 years in Upper Silesia have had a negative effect on buildings. T his impact is in all cases related with continuous deformations of the surface and in certain cases with discontinuous deformations (mostly cave-ins), changes in water relations and mining tremors. T he paper presents an evaluation of the impact of a mining activity on a building situated in the Upper Silesian Coal Basin. T he building was affected by continuous deformations and mining tremors. Calculations were made of the values of deformation rates by means of Budryk–Knothe’s theory, which were partly verified on the basis of the results from geodetic measurements. An analysis of the velocity and acceleration of basement vibrations caused by mining-induced tremors was also conducted. T he conclusions included a high consistency between the results obtained on the basis of calculations and the values obtained by means of PGA and PGV measurements. In the case of tremors with the highest energy in the hipocentrum, there an empirical formula allowing for calculation of PGA value in given geological and mining conditions was also proposed. T he application range of the formula mentioned above is obviously limited only to the conditions in consideration. The presented conclusions indicate that at present, sufficiently precise methods, allowing for calculations for practical purposes, not only of deformation indices’ values, but also of PGV and PGA values, presently exist.
Go to article

Abstract

Underground mining extraction causes the displacement and changes of stress fields in the surrounding rock mass. The determination of the changes is extremely important when the mining activity takes place in the proximity of post-flotation tailing ponds, which may affect the stability of the tailing dams. The deterministic modeling based on principles of continuum mechanics with the use of numerical methods, e.g. finite element method (FEM) should be used in all problems of predicting rock mass displacements and changes of stress field, particularly in cases of complex geology and complex mining methods. The accuracy of FEM solutions depends mainly on the quality of geomechanical parameters of the geological strata. The parameters, e.g. young modulus of elasticity, may require verification through a comparison with measured surface deformations using geodetic methods. This paper presents application of FEM in predicting effects of underground mining on the surface displacements in the area of the KGHM safety pillar of the tailing pond of the OUOW Żelazny Most. The area has been affected by room and pillar mining with roof bending in the years 2008-2016 and will be further exposed to room-and-pillar extraction with hydraulic filling in the years 2017–2019.
Go to article

Abstract

The paper presents the full transient, two-dimensional finite volume method numerical calculations of the classical involute scroll compressor geometry. The purpose of the study was to develop and evaluate an adaptable implementation of numerical fluid mechanics and thermodynamics modeling procedure with a mesh deformation. The methodology consisting in the compression chamber geometry preparation, mesh generation and governing equations solving was described. The evaluation was carried by simulating an adiabatic compression process and the results were compared with the theoretical zero-dimensional model and the existing research concerning the scroll chamber computational fluid dynamics modeling. It has been shown that the proposed modeling routine results in good accuracy for the scroll compressors study applications.
Go to article

Abstract

The paper presents a new geotechnical solution indicating a possibility of effective building structures protection. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. To minimize the mining damage or to reduce its reach it is reasonable to look for technical solutions, which would enable effective protection of building structures. So far authors concentrated primarily on the development of building structure protection methods to minimize the damage caused by the underground mining. The application of geotechnical methods, which could protect building structures against the mining damage, was not considered so far in scientific papers. It should be noticed that relatively few publications are directly related to those issues and there are no practical examples of effective geotechnical protection. This paper presents a geotechnical solution indicating a possibility of effective protection of building structures. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. The calculations were carried out in the Abaqus software, based on the finite element method.
Go to article

Abstract

Entries in steeply pitching seams have a more complex stress environment than those in flat seams. This study targets techniques for maintaining the surrounding rock mass stability of entries in steep seams through a case study of a steep-seam entry at a mine in southern China. An in-depth study of the deformation and instability mechanisms of the entry is conducted, employing field measurement, physical simulation experiment, numerical simulation, and theoretical analysis. The study results show that the surrounding rock mass of the entry is characterised by asymmetrical stress distribution, deformation, and failure. Specifically, 1) the entry deformation is characterised by a pattern of floor heaving and roof subsidence; 2) broken rock zones in the two entry walls are larger than those in the roof and floor, and the broken rock zone in the seam-floor side wall is larger than that in the seam-roof side wall; 3) rock bolts in the middle-bottom part of the seam-floor side wall of the entry are prone to failure due to tensile stress; and 4) rock bolts in the seam-roof side wall experience relatively even load and relatively small tensile stress. Through analysis, disturbances were found to occur in both temporal and spatial dimensions. Specifically, in the initial mining stage, the asymmetrical rock structure and stress distribution cause entry deformation and instability; during multiple-seam multiple-panel mining operations, a wedge-shaped rock mass and a quasi-arc cut rock stratum formed in the mining space may cause subsidence in the seam-floor side wall of the entry and inter-stratum transpression, deformation, and instability of the entry roof and floor. The principles for controlling the stability of the surrounding rock mass of the entry are proposed. In addition, an improved asymmetrical coupled support structure design for the entry is proposed to demonstrate the effective control of entry deformation.
Go to article

Abstract

The behaviour of porous sinters, during compression and compression with reverse cyclic torsion tests is investigated in the article based on the combination of experimental and numerical techniques. The sinters manufactured from the Distaloy AB powder are examined. First, series of simple uniaxial compression tests were performed on samples with three different porosity volume fractions: 15, 20 and 25%. Obtained data were then used during identification procedure of the Gurson-Tvergaard-Needleman finite element based model, which can capture influence of porosity evolution on plasticity. Finally, the identified Gurson-Tvergaard- Needleman model was validated under complex compression with reverse cyclic torsion conditions and proved its good predictive capabilities. Details on both experimental and numerical investigations are presented within the paper.
Go to article

Abstract

Some studies show that cells are able to penetrate through pores that are smaller than cell size. It concerns especially Red Blood Cells but it also may concern different types of biological cells. Such penetration of small pores is a very significant problem in the filtration process, for example in micro- or ultrafiltration. Deformability of cells allows them to go through the porous membrane and contaminate permeate. This paper shows how cells can penetrate small cylindrical holes and tries to assess mechanical stress in a cell during this process. A new mathematical approach to this phenomenon was presented, based on assumptions that were made during the microscopic observation of Red Blood Cell aspiration into a small capillary. The computational model concerns Red Blood Cell geometry. The mathematical model allows to obtain geometrical relation as well as mechanical stress relations.
Go to article

Abstract

This paper presents the results obtained from the structural re.nement of selected metals and alloys produced by severe plasticdeformation processes. Large levels of deformations were produced using four methods, which di.ered in the character and dynamics of the loading, as well as in the intensity and homogeneity oft he plastic strain .eld. Qualitative and quantitative studies of the re.ned microstructure were carried out using stereological and computer image analytical methods. Microhardness and selected mechanical properties, such as strength and yield point, were also determined.
Go to article

Abstract

The contributions of work-hardening of austenite and the presence of martensite on the hardening of an AISI 304L stainless steel were evaluated based on plastic deformation under different reductions in thickness at two rolling temperatures. The cold deformation temperatures of 300 K and 373 K were chosen to induce strain-hardening plus strain-induced martensitic transformation in the former and strain-hardening in the latter. This made it possible to elucidate the real effects of strengthening mechanisms of metastable austenitic stainless steels during mechanical working.
Go to article

Abstract

In the present work, studies have been carried out on the variations in the microstructure and hardness of P91 base-metal and welded joint. This variations result from the grit blasting and thermal cycle experienced during the thermal spraying process. The microstructural effects have been analyzed in terms of the depth of the deformation zone. Scanning Electron Microscopy and Xray diffraction were used as characterization techniques. The grit blasting carried out prior to thermal spraying has resulted in the highest change in sub-surface hardness of the heat affected zone (HAZ). However, flame treatment further reduced the subsurface hardness of the heat affected zone. The depth of deformation zone was highest for inter-critical heat affected zone (IC-HAZ). The overall coating process resulted in an increase in subsurface hardness of various regions of HAZ and fusion zone (FZ). The base metal showed a 7% increase in subsurface hardness due to the overall coating process. The IC-HAZ showed maximum variation with 36% increase in subsurface hardness. The coarse grained heat affected zone (CG-HAZ) and FZ did not show any change in subsurface hardness. As a whole, the hardness and microstructure of the welded joint was observed to be more sensitive to the thermal spray coating process as compared to the base metal.
Go to article

Abstract

The development of the crystallographic texture in copper subjected to severe plastic deformation (SPD) by means of high pressure torsion (HPT) and equal-channel angular pressing (ECAP) was experimentally investigated and analyzed by means of computer modelling. It was demonstrated, that the texture developed in HPT and ECAP Cu is characterized by significant inhomogeneity. Therefore, the analysis focused on the study of the texture distribution and its inhomogeneity in sample space. The detailed texture analysis, based on the X-ray diffraction technique, led to important observations concerning the localization of the maximum texture gradient and the regularity of its changes related to the parameters of the applied deformation. The obtained results provided the basis for certain conclusions concerning complex texture changes in SPD Cu.
Go to article

Abstract

In this study, high performance magnesium-yttria nanocomposite’s room temperature, strength and ductility were significantly enhanced by the dispersion of nano-sized nickel particles using powder blending and a microwave sintering process. The strengthening effect of the dispersed nano-sized nickel particles was consistent up to 100°C and then it gradually diminished with further increases in the test temperature. The ductility of the magnesium-yttria nanocomposite remained unaffected by the dispersed nano-sized nickel particles up to 100°C. Impressively, it was enhanced at 150°C and above, leading to the possibility of the near net shape fabrication of the nanocomposite at a significantly low temperature.
Go to article

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Abstract

Real-time monitoring of deformation of large structure parts is of great significance and the deformation of such structure parts is often accompanied with the change of curvature. The curvature can be obtained by measuring changes of strain, surface curve and modal displacement of the structure. However, many factors are faced with difficulty in measurement and low sensitivity at a small deformation level. In order to measure curvature in an effective way, a novel fibre Bragg grating (FBG) curvature sensor is proposed, which aims at removing the deficiencies of traditional methods in low precision and narrow adjusting. The sensor combines two FBGs with a specific structure of stainless steel elastomer. The elastomer can transfer the strain of the structure part to the FBG and then the FBG measures the strain to obtain the curvature. The performed simulation and experiment show that the sensor can effectively amplify the strain to the FBG through the unique structure of the elastomer, and the accuracy of the sensor used in the experiment is increased by 14% compared with that of the FBG used for direct measurement.
Go to article

Abstract

Mining activity influence on the environment belongs to the most negative industrial influences. Land subsidence can be a consequence of many geotectonic processes as well as due to anthropogenic interference with rock massif in part or whole landscape. Mine subsidence on the surface can be a result of many deep underground mining activities. The presented study offers the theory to the specific case of the deformation vectors solution in a case of disruption of the data homogeneity of the geodetic network structure in the monitoring station during periodical measurements in mine subsidence. The theory of the specific solution of the deformation vector was developed for the mine subsidence at the Košice-Bankov abandoned magnesite mine near the city of Košice in east Slovakia. The outputs from the deformation survey were implemented into Geographic Information System (GIS) applications to a process of gradual reclamation of whole mining landscape around the magnesite mine. After completion of the mining operations and liquidation of the mine company it was necessary to determine the exact edges of the Košice-Bankov mine subsidence with the zones of residual ground motion in order to implement a comprehensive reclamation of the devastated mining landscape. Requirement of knowledge about stability of the former mine subsidence was necessary for starting the reclamation works. Outputs from the presented specific solutions of the deformation vectors confirmed the multi-year stability of the mine subsidence in the area of interest. Some numerical and graphical results from the deformation vectors survey in the Košice-Bankov abandoned magnesite mine are presented. The obtained results were transformed into GIS for the needs of the self-government of the city of Košice to the implementation of the reclamation works in the Košice-Bankov mining area.
Go to article

Abstract

This paper proposes a modification of the classical process for evaluating the statistical significance of displacements in the case of heterogeneous (e.g. linear-angular) control networks established to deformation measurements and analysis. The basis for the proposed solution is the idea of local variance factors. The theoretical discussion was complemented with an example of its application on a simulated horizontal control network. The obtained results showed that the evaluation of the statistical significance of displacements in the case of heterogeneous control networks should be carried out using estimators of local variance factors.
Go to article

Abstract

Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.
Go to article

Abstract

This study investigates several factors that have not been specified in the standard for dynamic stiffness, compressibility, and long-term deformation; these factors can be used to evaluate the acoustic and physical performances of resilient materials. The study is intended to provide basic data for deriving the factors that need to be additionally reviewed through the standards. Since magnitude of dynamic stiffness changes with an increase in loading time, it is necessary to examine the setting of the loading time for a load plate under test conditions. Samples of size 300×300 mm, rather than 200×200 mm, yielded more reliable results for compressibility measurement. Since the test to infer long-term deformation of resilient materials after a period of 10 years in some samples showed variation characteristics different from those specified in the standards, it is recommended that the test method should be reviewed through ongoing research.
Go to article

Abstract

This paper focused on the effect of pure torsion deformation and various torsion pitches on the mechanical properties of the commercial pure Al wires which has not been examined so far. The initial wires with diameter of 4 mm have been torsion deformed to different pitch length (PL). In order to investigate the effect of gradient microstructure caused by torsion deformation, three different pitch length of 15 mm, 20 mm and 30 mm are considered. The results revealed that the level of grain refinement is correlated with the amount of induced plastic shear strain by torsion deformation. For the wire with pitch length of 15 mm, the grain sizes decreased to about 106 μm and 47 μm in the wire center and edge from the initial size of about 150 μm of the annealed wire. The micro-hardness measurement results show a gradient distribution of hardness from the wire center to the wire surface that confirmed the increasing trend of plastic shear strain obtained by FE simulations. The hardness of annealed sample (35 HV) is increased up to 73 HV at the wire surface for the smallest pitch length. The yield and ultimate tensile strength of the torsion deformed wires are also increased up to about 85 MPa and 152 MPa from the initial values of 38 MPa and 103 MPa of the annealed one respectively while the maximum elongation reduced significantly.
Go to article

Abstract

In the present paper, the effects of the subsequent extrusion after multi-pass equal-channel angular pressing (ECAP) process on the mechanical properties and microstructure of WE43 magnesium alloy are investigated. First, second and fourth passes ECAP followed by an extrusion process are applied on WE43 magnesium alloy to refine the microstructure and to improve the mechanical properties for biomedical applications. The results showed that among the ECAPed samples, the highest and lowest strength were obtained in the second and the first pass processed samples, respectively. The four passes processed sample showed the highest elongation to failure with moderate strength. The sample processed via first pass ECAP followed by extrusion exhibits an excellent combination of ductility and strength. The highest strength was obtained in the sample processed via the second pass ECAP followed by extrusion while the highest elongation was achieved in the sample processed via fourth pass ECAP followed by extrusion. Moreover, Vickers micro-indentation tests demonstrate that hardness is enhanced by an increase in the number of ECAP passes. Furthermore, a grain refinement process is presented for ECAP processing of WE43 alloy which shows a good agreement with microstructural investigations.
Go to article

Abstract

This paper presents results obtained from a laboratory investigation conducted on material from a pressure vessel after longterm operation in the oil refinery industry. The tested material contained structural defects which arose from improper heat treatment during steel plate manufacturing. Complex tensile tests with acoustic emission signal recording were conducted on both notched and unnotched specimens. The detailed analysis of different acoustic emission criteria allowed as to detect each stage of plastic deformation and microstructural damage processes after a long-term operation, and unused carbon steels during quasi-static axial tension testing. The acoustic emission activity, generated in the typical stages of material deformation, was correlated by microscopy observations during the tensile test. The results are to be used as the basis for new algorithms for the assessment of the structural condition of in-service pressure equipment.
Go to article

Abstract

The paper presents the results of an investigation of the thermal deformation of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using the hot-distortion method (DMA apparatus from Multiserw-Morek). The results were combined with linear deformation studies with determination of the linear expansion factor (Netzsch DIL 402C dilatometer). The study showed that the introduction of relaxation additive has a positive effect on the thermal stability of moulding sand by limiting the measured deformation value, in relation to the moulding sand without additive. In addition, a relaxation additive slightly changes the course of the dilatometric curve. Change in the linear dimension of the moulding sand sample with the relaxation additive differs by only 0.05%, in comparison to the moulding sand without additive.
Go to article

Abstract

In the knock-out process, as well as in the preliminary phase of moulding sand reclamation, the issue of energy demand for the process of crushing used sand agglutinations, preferably to single grains, is particularly important. At present, numerical values of moulding sand impact resistance, which would allow energy-related aspects of this process to be forecast, are not known, as such research has not been carried out. It seems that impact resistance tested on very small cross-section samples, which allows us to very precisely reveal some unique features of a moulding sand with organic and inorganic binders, is an important parameter, which so far has not been taken into account for evaluation of mechanical properties of moulding sands. Preliminary attempts to determine impact resistance of moulding sands have been carried out as part of own research of the author. The conducted investigations aimed at determining the relationships between the obtained values of tensile strength and impact resistance of moulding sands. In addition, the effect of holding samples at temperatures of 100oC, 200oC, 300oC on the value of impact resistance was determined, both for sands made with fresh and with reclaimed sand grains.
Go to article

This page uses 'cookies'. Learn more