Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The level of sales of a given good depends largely on the distribution network. An analysis of the distribution network allows companies to optimize business activity, which improves the efficiency and profitability of a company’s sales with an immediate effect on profit growth. The so-called spatial analysis is highly useful in this regard. The paper presents an analysis of the network of authorized dealers of the Polish Mining Group for the Opolskie Province. The analysis was done using GIS (SIP) tools. The purpose of the analysis was to present tools that could be used to verify an existing distribution network, to optimize it, or to create a new sales outlet. The prresented tools belong to GIS operations used to process data stored in Spatial Information System resources. These are so-called geoprocessing tools. The article contains several spatial analyses, which results in choosing the optimum location of the distribution point in terms of the defined criteria. The used tools include a spatial intersection and sum. Geocoding and the so-called cartodiagram were also used. The presented analysis can be performed for both the network of authorized retailers within a region, a city or an entire country. The presented tools provide the opportunity to specify the target consumers, areas where they are located and areas of potential consumer concentration. This allows the points of sale in areas with a high probability of finding new customers to be located, which enables the optimal location to be chosen, for example, in terms of access to roads, rail transport, locations of the right area and neighborhood. Spatial analysis tools will also enable the coal company to verify its already existing distribution network.
Go to article

Abstract

The loss of power and voltage can affect distribution networks that have a significant number of distributed power resources and electric vehicles. The present study focuses on a hybrid method to model multi-objective coordination optimisation problems for dis- tributed power generation and charging and discharging of electric vehicles in a distribution system. An improved simulated annealing based particle swarm optimisation (SAPSO) algorithm is employed to solve the proposed multi-objective optimisation problem with two objective functions including the minimal power loss index and minimal voltage deviation index. The proposed method is simulated on IEEE 33-node distribution systems and IEEE-118 nodes large scale distribution systems to demonstrate the performance and effectiveness of the technique. The simulation results indicate that the power loss and node voltage deviation are significantly reduced via the coordination optimisation of the power of distributed generations and charging and discharging power of electric vehicles.With the methodology supposed in this paper, thousands of EVs can be accessed to the distribution network in a slow charging mode.
Go to article

Abstract

The active distribution network (ADN) represents the future development of distribution networks, whether the islanding phenomenon occurs or not determines the control strategy adopted by the ADN. The best wavelet packet has a better time-frequency characteristic than traditional wavelet analysis in the different signal processing, because it can extract better and more information from the signal effectively. Based on wavelet packet energy and the neural network, the islanding phenomenon of the ADN can be detected. Firstly, the wavelet packet is used to decompose current and voltage signals of the public coupling point between the distributed photovoltaic (PV) system and power grid, and calculate the energy value of each decomposed frequency band. Secondly, the network is trained using the constructed energy characteristic matrix as a neural network learning sample. At last, in order to achieve the function of identification for islanding detection, lots of samples are trained in the neural network. Based on the actual circumstance of PV operation in the ADN, the MATLAB/SIMULINK simulation model of the ADN is established. After the simulation, there are good output results, which show that the method has the characteristics of high identification accuracy and strong generalization ability.
Go to article

This page uses 'cookies'. Learn more