Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The last two decades have brought a significant modernization in methods of cultivation in greenhouses. Soilless cultures, isolated from soils, have become a common practice, similarly as fertigation (fertilization + irrigation) installations, although most of them are applied in the open system (with no recirculation), where excess nutrient solution is removed straight to soil. This situation was the reason why it was decided to conduct studies, extended over a period of many years, on the estimation of environmental pollution caused by discharged drainage waters containing mineral fertilizers in economically important cultures in Poland (anthurium, tomato, cucumber). On the basis of the chemical composition of drainage waters and amounts of nutrient solution spillway from culture beds data were estimated concerning pollution of the soil medium by the nutrient solution. The level of pollution was dependent on nutrient requirements of crops and the length of the vegetation period. The highest environmental pollution is caused by intensive tomato growing (in kg·month·ha-1): N-NO3 (up to 245), K (up to 402), Ca (up to 145) and S-SO4 (up to 102). A lesser threat is posed by metal microelements: Fe (up to 2.69), Mn (up to 0.19), Zn (up to 0.52) and Cu (up to 0.09). Lower contamination of the natural environment is generated in cultures with lower nutrient requirements (anthurium) and in the case of culture on organic substrates. With an increase in ecological awareness of producers recirculation systems should be implemented in the production practice, in which drainage waters do not migrate directly to soil, but are repeatedly used to feed crops.
Go to article

Abstract

The aim of study was to investigate the effect of nutrient solution leakage during plant cultivation in greenhouse on soil pollution. Investigations were conducted in horticultural farms in the Wielkopolskie province (Greater Poland), specializing in soilless plant cultivation in greenhouse. In the first farm located on sandy soil tomato has been grown since its establishment (Object A). Prior to the beginning of crop culture soil samples were collected for analyses at every 0.2 m layer, to the depth of one meter. Successive samples were taken also in autumn after the completion of 1, 2, 3 and 7 culture cycles. For comparison, research was also conducted in a greenhouse located on loamy sand/sandy loam soil used for 8 years for tomato culture (Object B). In all these facilities plants in rockwool were grown and the fertigation in an open system was provided. Chemical analyzes showed the dynamics of soil properties changes and vertical distribution of cations and anions within the soil profile. Increased content of almost all nutrients and particularly of S-SO4, P, K, Zn, N-NH4, N-NO3 in the soil profile in object A and S-SO4, K, P, N-NO3 in the soli profile in object B were recorded. The results showed that the degradation rate of the soil environment as a result of open fertigation system application depends primarily on the duration of greenhouse operation. However, explicit changes in the chemical properties of soils were observed already after the first growth cycle. Smaller doses of fertilizers and water, and in consequence reduction of nutrients losses may be achieved by closed fertigation systems.
Go to article

This page uses 'cookies'. Learn more