Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

When observations are autocorrelated, standard formulae for the estimators of variance, s2, and variance of the mean, s2 (x), are no longer adequate. They should be replaced by suitably defined estimators, s2a and s2a (x), which are unbiased given that the autocorrelation function is known. The formula for s2a was given by Bayley and Hammersley in 1946, this work provides its simple derivation. The quantity named effective number of observations neff is thoroughly discussed. It replaces the real number of observations n when describing the relationship between the variance and variance of the mean, and can be used to express s2a and s2a (x) in a simple manner. The dispersion of both estimators depends on another effective number called the effective degrees of freedom Veff. Most of the formulae discussed in this paper are scattered throughout the literature and not very well known, this work aims to promote their more widespread use. The presented algorithms represent a natural extension of the GUM formulation of type-A uncertainty for the case of autocorrelated observations.
Go to article

Abstract

Prior knowledge of the autocorrelation function (ACF) enables an application of analytical formalism for the unbiased estimators of variance s2a and variance of the mean s2a(xmacr;). Both can be expressed with the use of so-called effective number of observations neff. We show how to adopt this formalism if only an estimate {rk} of the ACF derived from a sample is available. A novel method is introduced based on truncation of the {rk} function at the point of its first transit through zero (FTZ). It can be applied to non-negative ACFs with a correlation range smaller than the sample size. Contrary to the other methods described in literature, the FTZ method assures the finite range 1 < neff ≤ n for any data. The effect of replacement of the standard estimator of the ACF by three alternative estimators is also investigated. Monte Carlo simulations, concerning the bias and dispersion of resulting estimators sa and sa(×), suggest that the presented formalism can be effectively used to determine a measurement uncertainty. The described method is illustrated with the exemplary analysis of autocorrelated variations of the intensity of an X-ray beam diffracted from a powder sample, known as the particle statistics effect.
Go to article

This page uses 'cookies'. Learn more