Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The article presents a synthetic analysis of the crude oil market in Poland. As of today, this safety is provided mainly on the basis of native lignite and hard coal resources. However, the analysis of the hard coal market conducted by the authors indicates that the carried out mining restructuring (among others) led to an excessive reduction of mining volume and employment level in the hard coal mining sector. This led to a precedent situation when Poland became an importer of this energy carrier. In addition, the European Union’s requirements for greenhouse gas emissions must be taken into account. In connection with the above, it is necessary to search for new energy sources or technologies that enable hard coal to meet the requirements. It is possible to apply the so-called clean coal technologies that allow the greenhouse gas emissions generated during coal combustion to be reduced. As of today, they are not used on a mass scale, because the use of this type of technology involves additional financial expenses. However, taking into account that technologies have been growing faster and faster, are modernized in a shorter time, making a breakthrough discovery took hundreds of years, now it is often a few months, clean coal technologies can become the optimal solution in the near future. It is also necessary to diversify the sources of obtaining imported energy carriers. The article describes coal and crude oil in terms of their mutual substitution. The article is a continuation of research conducted by the authors. Previous publications presented considerations on analogous topics related to natural gas and renewable energy sources. The crude oil market in Poland was analyzed and forecasts for oil extraction and the demand in the world and Poland by 2023 were presented. The SARIMA model was also created. The model made it possible to obtain oil an prices forecast.
Go to article

Abstract

Blockchain is a technology, which could revolutionize many industries in the future. A system like that is based on a chain of blocks that is used for storing and transferring various data, forming a decentralized ledger. Although various fundamental projects based on the blockchain system in the energy industry are in their early stage of development, as well as other solutions, applications of blockchain technology in the broadly understood power engineering sector are considered to have a very large potential. This paper presents a brief description of the blockchain technology, its general operating principle and the possibilities it brings. The next section of the article contains a characterization of two exemplary and possible blockchain technology applications, which in the perspective of time may have a significant impact on the power engineering sector. The first solution is related to carrying out energy transactions, which could be conducted in an easy way directly between energy producers and consumers. Thanks to blockchain technology, this could lead to a partial decentralization in that area. The second proposed example concerns energy resources origin tracking, which would allow fixed origin attributes and parameters affecting the environment to be assigned to the generated energy. By implementing that solution, it would be possible to construct a fuel footprint of individual generating units. The article also mentions examples of other potential applications of blockchain technology in the power engineering sector.
Go to article

Abstract

Energy and spectral efficiency are the main challenges in 5th generation of mobile cellular networks. In this paper, we propose an optimization algorithm to optimize the energy efficiency by maximizing the spectral efficiency. Our simulation results show a significant increase in terms of spectral efficiency as well as energy efficiency whenever the mobile user is connected to a low power indoor base station. By applying the proposed algorithm, we show the network performance improvements up to 9 bit/s/Hz in spectral efficiency and 20 Gbit/Joule increase in energy efficiency for the mobile user served by the indoor base station rather than by the outdoor base station.
Go to article

Abstract

The article aims to evaluate the Portuguese building stock energy policies and strategy for energy saving in buildings among the EU members. It was found out the average heat transfer coefficients of the main structural elements of Portuguese Buildings and analyzed the U-values of this elements considering different time periods. The fundamentals of this study were funded by the Agency for Development and Innovation (ADI) and co-financed by the European Regional Development Fund (FEDER) through the Operational Program for Competitiveness Factors (POFC) assigned to the Building Physics and Construction Technology Laboratory with the reference SB Tool SPT_2011_4.
Go to article

This page uses 'cookies'. Learn more