Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The paper presents an analysis of relations describing entropy generation in a condenser of a steam unit. Connections between entropy generation, condenser ratio, and heat exchanger effectiveness, as well as relations implied by them are shown. Theoretical considerations allowed to determine limits of individual parameters which describe the condenser operation. Various relations for average temperature of the cold fluid were compared. All the proposed relations were verified against data obtained using a simulator and actual measurement data from a 200 MW unit condenser. Based on data from a simulator it was examined how the sum of entropy rates, steam condenser effectiveness, terminal temperature difference and condenser ratio vary with the change in the inlet cooling water temperature, mass flow rate of steam and the cooling water mass flow rate.
Go to article

Abstract

This paper presents mathematical modelling and numerical analysis to evaluate entropy generation analysis (EGA) by considering pressure drop and second law efficiency based on thermodynamics for forced convection heat transfer in rectangular duct of a solar air heater with wire as artificial roughness in the form of arc shape geometry on the absorber plate. The investigation includes evaluations of entropy generation, entropy generation number, Bejan number and irreversibilities of roughened as well as smooth absorber plate solar air heaters to compare the relative performances. Furthermore, effects of various roughness parameters and operating parameters on entropy generation have also been investigated. Entropy generation and irreversibilities (exergy destroyed) has its minimum value at relative roughness height of 0.0422 and relative angle of attack of 0.33, which leads to the maximum exergetic efficiency. Entropy generation and exergy based analyses can be adopted for the evaluation of the overall performance of solar air heaters.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

Presented work considers flow and thermal phenomena occurring during the single minijet impingement on curved surfaces, heated with a constant heat flux, as well as the array of minijets. Numerical analyses, based on the mass, momentum and energy conservation laws, were conducted, regarding single phase and two-phase simulations. Focus was placed on the proper model construction, in which turbulence and boundary layer modeling was crucial. Calculations were done for various inlet parameters. Initial single minijet results served as the basis for the main calculations, which were conducted for two jet arrays, with flat and curved heated surfaces. Such complex geometries came from the cooling systems of electrical devices, and the geometry of cylindrical heat exchanger. The results, regarding Nusselt number, heated surface temperature, turbulence kinetic energy, production of entropy and vorticity, were presented and discussed. For assumed geometrical parameters similar results were obtained.
Go to article

Abstract

The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm). The calculated diameter depends on and is positively related to the roughness assumed in the model.
Go to article

Abstract

The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.
Go to article

Abstract

In thermosfluid dynamics, free convection flows external to different geometries, such as cylinders, ellipses, spheres, curved walls, wavy plates, cones, etc., play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can play a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cylindrical bodies has gained exceptional interest. In this article, we mathematically evaluate an entropy analysis of magnetohydrodynamic third-grade convection flows from permeable cylinder considering velocity and thermal slip effects. The resulting non-linear coupled partial differential conservation equations with associated boundary conditions are solved with an efficient unconditionally stable implicit finite difference Keller-Box technique. The impacts of momentum and heat transport coefficients, entropy generation and Bejan number are computed for several values of non-dimensional parameters arising in the flow equations. Streamlines are plotted to analyze the heat transport process in a two-dimensional domain. Furthermore, the deviations of the flow variables are compared with those computed for a Newtonian fluid and this has important implications in industrial thermal material processing operations, aviation technology, different enterprises, energy systems and thermal enhancement of industrial flow processes.
Go to article

This page uses 'cookies'. Learn more