Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The purpose of the article was to characterize the international steam coal market based on the latest available data. The information goes back to the first half of 2018. The article focuses on the description of the three largest exporters and importers of steam coal. Representatives in these categories were selected using the latest global statistics on 2017. In 2017, global production of steam coal amounted to 5.68 billion tons and exceeded production in 2016 by 4%. For several years, invariably the world’s leading exporters of steam coal are: Indonesia, Australia and Russia. In total, these three countries in 2017 supplied 73% of steam coal to the international market. However, for the 46% of global steam coal imports (data for 2017), three Asian countries are responsible: China, India and Japan. For each of the six listed countries (i.e. for: three major global exporters and three major global importers), the paper presents volumes related to coal production, export or import. The directions of deliveries or major coal exporters to a given country were also included. At the end of the article, the price situation was presented, as it appeared in the first half of 2018 on the European and Asian markets.
Go to article

Abstract

The article presents an analysis of Russia’s participation in international steam coal trade, which has been its important participant for years. The research covered the years 2014–2018. The geographical location on two continents and the availability of coal deposits, favors its presence on both the Pacific and Atlantic markets. The article also discusses the main coal producers in Russia and the prices of Russian steam coal directed to the spot market. Due to the significant share of coal exports for the Russian economy, the focus was also on analyzing Russian seaports. In recent years, Asian exports have dominated in Russian steam coal exports. The share of export to this market in the years 2014–2018 was in the range of 49–57% (60–87 million tons). Currently, three countries play an important role among Asian countries: South Korea, China and J apan. They purchased a total of 38–52 million tons of Russian coal. Although in the years under analysis Russia exported 52–67 million tons of steam coal to the European market, the share of this market dropped from almost half to around 40%. T he slow departure from coal energy contributes to reducing the share of recipients from this direction. Among European countries, in 2014 the main direction of export was Great Britain with 19% (24 million tons) of total export share. In 2018, exports fell to 9 million tons (5%). Among European destinations for Russian coal, Poland’s share is growing in importance. In the years 2014–2018, steam coal exports to Poland varied in the range of 5.6–16.2 million tons. In the years 2014–2018 it changed in the range of 5.6–16.2 million tons. The dynamic growth achieved in the last three years is noteworthy. In relation to 2016, imports increased by 10.0 million tons and in 2018 amounted to as much as 16.1 million tons. The article also discusses the geographical structure of coal imports to Poland by railway border crossings and seaports.
Go to article

Abstract

Nutrient pollution such as nitrate (NO3−) can cause water quality degradation in rivers used as a source of drinking water. This situation raises the question of how the nutrients have moved depending on many factors such as land use and anthropogenic sources. Researchers developed several nutrient export coefficient models depending on the aforementioned factors. To this purpose, statistical data including a number of factors such as historical water quality and land use data for the Melen Watershed were used. Nitrate export coefficients are estimates of the total load or mass of nitrate (NO3−) exported from a watershed standardized to unit area and unit time (e.g. kg/km2/day). In this study, nitrate export coefficients for the Melen Watershed were determined using the model that covers the Frequentist and Bayesian approaches. River retention coefficient was determined and introduced into the model as an important variable.
Go to article

This page uses 'cookies'. Learn more