Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 57
items per page: 25 50 75
Sort by:

Abstract

The bonding state of the asphalt layers in a road pavement structure significantly affects its fatigue life. These bondings, therefore, require detailed tests and optimization. In this paper, the analyses of the correlation between the results of laboratory static tests and the results of fatigue tests of asphalt mixture interlayer bondings were performed. The existence of the relationships between selected parameters was confirmed. In the future, the results of these analyses may allow for assessment of interlayer bondings' fatigue life based on the results of quick and relatively easy static tests.
Go to article

Abstract

The paper presents results of a study concerning an AlSi7Mg alloy and the effect of subjecting the liquid metal to four different processes: conventional refining with hexachloroethane; the same refining followed by modification with titanium, boron, and sodium; refining by purging with argon carried out in parallel with modification with titanium and boron salts and strontium; and parallel refining with argon and modification with titanium, boron, and sodium salts. The effect of these four processes on compactness of the material, parameters of microstructure, and fatigue strength of AlSi7Mg alloy after heat treatment. It has been found that the highest compactness (the lowest porosity ratio value) and the most favorable values of the examined parameters of microstructure were demonstrated by the alloy obtained with the use of the process including parallel purging with argon and modification with salts of titanium, boron, and sodium. It has been found that in the fatigue cracking process observed in all the four variants of the liquid metal treatment, the crucial role in initiation of fatigue cracks was played by porosity. Application of the process consisting in refining by purging with argon parallel to modification with Ti, B, and Na salts allowed to refine the microstructure and reduce significantly porosity of the alloy extending thus the time of initiation and propagation of fatigue cracks. The ultimate effect consisted in a distinct increase of the fatigue limit value.
Go to article

Abstract

The strength of conveyor belts splices made in mines rarely reaches full belt strength. It consists of a number of factors. The primary is the method of their construction and proper selection of ingredients. The significant impact has also has splice quality covering both keeping proper geometry matched to the belt construction and belts working conditions and adherence to the best practices in the field of technologies of their construction.Difficult conditions in underground mines and pressure on reducing conveyor downtime (avoiding production losses) is reflected by a drop in static and dynamic splices strength. This is confirmed by numerous studies of belt splices strength and fatigue life conducted in the Laboratory of Belt Conveying (LTT) within the framework of research and expert opinions commissioned by belt manufacturers and their users. The consequence of too insufficiently low belt splices strength is their low durability, decreasing reliability and, consequently, higher mining transportation costs. Belt splices are in fact the weakest link in the serial structure which form closed loops of interconnected belt sections working in series of conveyors transporting excavated material in the mine. The article presents the results of simulation analyzes analyses investigating how the increase of belt splices durability may contribute to the reduction of transportation costs in the underground mines.
Go to article

Abstract

The authors present a numerical study of a start-up of a boiler with a thick-walled element subjected to thermomechanical loading. The significance of calculations of real heat transfer coefficients has been demonstrated. Fluid dynamics, mechanical transient thermal and static structural calculations have been conducted in both separate and coupled modes. Strain-stress analyses prove that the effect of the heat transfer coefficient changing in time and place in comparison with a constant one as recommended by standards is the key factor of fatigue calculations.
Go to article

Abstract

The present work has the objective of studying the effect of shot peening with glass microspheres on SAE 1020 steel in its resistance to fatigue. Fatigue tests were carried out by rotary bending with load control and loading on balance in specimens with and without shot peening. A rotation speed of approximately 750 rpm (12.5 Hz) was employed in the fatigue tests. Vickers microhardness tests were performed in order to verify the surface hardening produced by shot peening with glass microspheres. Analysis of the steel surface and fatigue fractures was performed using scanning electron microscopy (SEM). Fatigue tests were performed in order to obtain S-N curves (Wöhler curves). It was observed that shot peening with glass microspheres improved the fatigue strength of the steel at high cycle.
Go to article

Abstract

This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF) can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.
Go to article

Abstract

The paper analyses the influence of seasonal temperature variations on fatigue strength of flexible and semi-rigid pavement structures chosen for KR4 traffic flow category. The durability of pavement determined assuming a yearly equivalent temperature of 10˚C and assuming season-dependent equivalent temperatures was compared. Durability of pavement was determined with the use of Asphalt Institute Method and French Method. Finite Element Method was applied in order to obtain the strain and stress states by the means of ANSYS Mechanical software. Obtained results indicate a considerable drop in pavement durability if seasonal temperature variations are considered (up to 64% for flexible pavements and up to 80% for semi-rigid pavements). Durability obtained by the French Method presents lower dependence on the analysed aspect.
Go to article

Abstract

Thermo-chemical treatments are known to increase the fatigue life of industrial parts. Due to the imprecise consideration of residual stresses in predicting the durability of components subjected to cyclic loading and their effect on the fatigue life, the authors developed a numerical model combining the influence of residual stresses with stresses caused by bending. The authors performed the numerical simulation with the use of Finite Element Method to analyse material behaviour during cyclic loading. The residual stress state developed during nitriding was introduced onto cross-section of the numerical specimen. The goal of this work was better understanding of the real conditions of the nitride steel fatigue processes and improving the knowledge about numerical predicting of the fatigue life for parts with residual stresses. The results of simulation were compared with plane bending fatigue tests. The presented method indicates the possibility of increasing the accuracy of the fatigue analysis of elements after surface treatment, increasing its certainty and the ability to perform better optimization of service life.
Go to article

Abstract

In the paper, on the basis of the performed tests, low-cycle fatigue characteristics (LCF) of selected light metal alloys used among others in the automotive and aviation industries were developed. The material for the research consisted of hot-worked rods made of magnesium alloy EN-MAMgAl3Zn1, two-phase titanium alloy Ti6Al4V and aluminium alloy AlCu4MgSi(A). Alloys used in components of means of transport should have satisfactory fatigue, including low-cycle fatigue, characteristics. Low-cycle fatigue tests were performed on an MTS-810 machine at room temperature. Low-cycle fatigue tests were performed for three total strain ranges Δεt = 0.8%, 1.0% and 1.2% with a cycle asymmetry coefficient R = –1. On the basis of the obtained results, characteristics of the fatigue life of materials, cyclic deformation σa = f(N) and cyclic deformation of the tested alloys were developed. The tests showed that titanium alloy Ti6Al4V was characterised by the highest fatigue life Nf, whereas the lowest fatigue life was found in the tests of the aluminium alloy AlCu4MgSi(A).
Go to article

Abstract

The paper presents the results of comparative tests of the fatigue properties conducted on two non-ferrous alloys designated as Al 6082 and Al 7075 which, due to the satisfactory functional characteristics, are widely used as engineering materials. The fatigue tests were carried out using a proprietary, modified low cycle test (MLCF). Particular attention was paid to the fatigue strength exponent b and fatigue ductility exponent c. Based on the tests carried out, the results comprised within the range defined by the literature were obtained. These results prove a satisfactory sensitivity of the method applied, its efficiency, the possibility of conducting tests in a fully economical way and above all the reliability of the obtained results of the measurements. Thus, the thesis has been justified that the modified low cycle fatigue test (MLCF) can be recommended as a tool used in the development of alloy characteristics within the range of low-cycle variable loads
Go to article

Abstract

The experimental material consisted of semi-finished products of high-grade, medium-carbon constructional steel with: manganese, chromium, nickel, molybdenum and boron. The experimental material consisted of steel products obtained in three metallurgical processes: electric and desulfurized (E), electric and desulfurized with argon-refined (EA) and oxygen converter with vacuum degassed of steel (KP). The production process involved two melting technologies: in a 140-ton basic arc furnace with desulphurisation and argon refining variants, and in a 100-ton oxygen converter. Billet samples were collected to analyze: relative volume of impurities, microstructure and fatigue tests. The samples were quenched and austenitized at a temperature of 880o C for 30 minutes. They were then cooled in water and tempered by holding the sections at a temperature of 200, 300, 400, 500 and 600o C for 120 minutes and air-cooled. Fatigue tests were performed with the use of a rotary bending machine at a frequency of 6000 cpm. The results were statistical processed and presented in graphic form. This paper discusses the results of microstructural analyses, the distribution of the relative volume of impurities in different size ranges, the fatigue strength characteristics of different production processes, the average number of sampledamaging cycles and the average values of the fatigue strength coefficient for various heat processing options.
Go to article

Abstract

In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade. The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF), which enables the determination of parameters resulting from the Manson-Coffin-Morrow relationship. The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidal graphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties,) confirmed also small variations in the geometrical parameters of graphite related with its content and morphological features.
Go to article

Abstract

The article presents an analysis of the change in air voids in asphalt mixtures subjected to fatigue tests at three temperatures of 0°C, 10°C and 25°C. The X-ray computerized tomography imaging method, XCT, was used to identify the air voids in the samples. The research allowed to determine changes in the content of air voids in subsequent fatigue cycles in the sample area. The relationship between air voids volume and the stiffness modulus value was also determined during fatigue for three temperatures. The largest changes were found in samples with notches at 0°C. The analysis of the change in the content of air voids showed that the micro-cracking nucleation processes develop with the number of fatigue cycles. Using the numerical model finite element method we determined the distribution and change in fatigue damage in the extreme areas of the sample during various stages of fatigue. We found clear relationship between the damage and the increased content of air voids.
Go to article

Abstract

The paper presents the results of research on low cycle properties of high-chromium martensitic GX12CrMoVNbN9-l (GP91) cast steel. The tests of fatigue strength were carried out at two temperatures: room temperature and at 600 degrees centigrade. At both temperatures the occurrence of cyclic softening of the cast steel was observed, revealing no clear stabilization period. Moreover, it has been proved that the fatigue life is influenced by the temperature which depends on the level of strain. The greatest influence was observed for the smallest strain levels applied in the research.
Go to article

Abstract

The effect of hydrogen on short-term strength, low-cycle durability and planestress fracture toughness of 10Cr15Ni27 steel, 04Cr16Ni56 and 05Cr19Ni55 alloys at pressure up to 35 MPa and temperature 293. . . 773 K was investigated. The modes of hydrogen action for which the elongation δ, reduction of area ψ, low-cycle durability N and crack resistance parameters Kc of alloys are minimal were established: hydrogen pressure above 10 MPa (non-hydrogenated specimens of 04Cr16Ni56 alloy) and above 15 MPa (hydrogenated specimens of 10Cr15Ni27 steel and 05Cr19Ni55 alloy, hydrogen concentration 15 and 19 wppm, respectively).
Go to article

Abstract

The small artificial surface defects in the coarse-grain steel are studied. The size of the used defects is smaller than the most relevant microstructural unit of steel, i.e. the average grain size. The samples of coarse-grain steel are prepared using a welding thermal-cycle simulator and a laboratory furnace. The defects are made by indenting with a Vickers pyramid. One of the final results of the defect making is the existence of local residual stresses. The influence of residual stresses on the crack initiation from those artificial defects is discussed in the article.
Go to article

Abstract

The development of a novel design for the toothed segment of drive transmission in longwall shearer is expected to significantly reduce the cost of individual components of the feed system and the related work of repair and renovations, increasing at the same time the safety of mine repair teams. The conducted experimental and numerical analysis of the state of stress and strain in the innovative design of the toothed segment has enabled estimating the maximum effort of the developed structure. Based on the results of fundamental mechanical studies of the cast L20HGSNM steel and fatigue tests combined with the numerical stress/strain analysis, the fatigue life curve was plotted for the examined casting of the rack.
Go to article

Abstract

In this research work, Ti6Al4V alloy material was subjected to electric discharge machining (EDM) and its fatigue life was investigated at low cycle fatigue mode. In order to evaluate the influence of recast layer generated during the machining process on the fatigue life, samples prepared using end milling process were also subjected to similar tests and a comparative analysis is presented. Data were observed in the fully reversed fatigue mode at room temperature using samples fabricated as per ASTM standard E606. The specimen were machined on a spark electric discharge die sink machine which were subjected to fatigue, and the recorded fatigue lives were compared with the fatigue life of end milled specimen. The machined surfaces were examined through optical and scanning electron microscopes, and the roughness was measured with a standard profilometer. It was observed that when the discharge current is augmented, the recast layer formed was in the range of 20 to 70 µm thick. From the results, it is being concluded that fatigue life of the samples fabricated by EDM is less for various load conditions when compared with that of the end milled sample. The milled sample at 160 MPa load exhibited 2.71×105 cycles, which is 64% more when compared to EDM sample.
Go to article

Abstract

7N01-T4 aluminum alloy was welded by metal inert gas welding and the influence of V-groove angle on joint fatigue properties was investigated. The results indicate that the volume of fusion zone (FZ) and the grains in FZ become small when the groove angle decreases to 50° from 70°. Most pores distribute at the FZ edge and fewer pores are formed in the small angle joint. The fatigue crack mainly initiates at the transition region between the weld passes due to the pore concentration. The small angle contributes to increasing joint fatigue properties, especially at the low stress level. The fatigue strength of 50° joint is 103.06 MPa which is 15.3% higher than that of 70°joint.
Go to article

Abstract

The paper presents the results of research work on linear FSW (Friction Stir Welding) joining aluminum alloys AA2024-T3 of 0.5 mm in thickness. The study was conducted on properly adapted numerical controlled 3 axis milling machine using a ceramic tool and special designed fastening device. The tool dimensions have been estimated according to the algorithm shown in the literature [4]. All joints were made of end-to end (butt) configuration under different welding speed. The rotational speed of the tool and tool offset was constant. The effect of selected technological parameters on the quality of the joint was analyzed. Produced butt joint have been subjected to a static tensile testing to identify mechanical features of the materials of joints compared to parent materials. Measurements of micro hardness HV in the plastically formed stir zone of joint and in the parent material have been carried out. Axial and radial welding forces in the joining region were recorded during the tests and their dependency from the welding parameters was studied. Based on the results of strength tests the efficiency of joints for sheets of 0.5 mm in thicknesses oscillated up to 96% compared to the parent material. It has been found that for given parameters the correct, free of defects joints were obtained. The paper also presents the results of low-cycle fatigue tests of obtained FSW joints. The use of a ceramic tool in the FSW process allows to obtain welds with higher strength than conventional tools. The results suggests that FSW can be potentially applied to joining aluminum alloys.
Go to article

Abstract

The aim of the study is to compare flexible pavement design lifespans and the main factors which create their values for a standard structure and one with an anti-fatigue course AF at different parameter values of pavement and its load, relevant to their design processes. Depending on the mixture used for the anti-fatigue course or the course thickness, durability improvement of the pavement (compared to the durability of a standard structure) can be obtained by extending the design lifespan of the asphalt base course or by extending the design lifespan of the AF course. On sections with predominantly slow traffic, the lifespan decreases significantly compared to sections with typical vehicle speed – the relative decrease is greater if anti-fatigue course is applied.
Go to article

Abstract

The paper presents results of research on an influence of listening fatigue on the detection of changes in spectrum and envelope of musical samples. The experiment was carried out under conditions which normally exist in a studio or on the stage when sound material is recorded and/or mixed. The equivalent level of presented sound samples is usually 90 dB and this is an average value of sound level existing in control room at various recording activities. Such musical material may be treated as a noise so Temporary Threshold Shift phenomenon may occur after several sessions and this may lead to a listening fatigue effect. Fourteen subjects participated in the first part of the experiment and all of them have the normal hearing thresholds. The stimuli contained the musical material with introduced changes in sound spectrum up to ±6 dB in low (100 Hz), middle (1 kHz) and high frequency (10 kHz) octave bands. In the second part of research five subjects listened to musical samples with introduced envelope changes up to ±6 dB in interval of 1 s. The time of loud music exposure was 60, 90 and 120 minutes and this material was completely different from the tested samples. It turned out that listening to the music with an Leq = 90 dB for 1 hour influences the hearing thresholds for middle frequency region (about 1-2 kHz) and this has been reflected in a perception of spectral changes. The perceived peaks/notches of 3 dB have the detection ability at 70% and the changes of low and high ranges of spectrum were perceived at the similar level. After the longer exposure, the thresholds shifted up to 4.5 dB for the all investigated stimuli. It has been also found that hearing fatigue after 1 hour of a listening influences the perception of envelope which gets worse of 2 dB in comparison to the fresh-ear listening. When time of listening to the loud music increases, the changes in envelopes which can be detected rise to the value of 6 dB after 90-minutes exposure and it does not increase with further prolongation of listening time.
Go to article

This page uses 'cookies'. Learn more