Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a Lagrangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The twoway coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono::Fluid, is part of the Chrono project and available as an open-source software.
Go to article

Abstract

One of the applications of tether system is in the field of satellite technology, where the mother ship and satellite equipment are connected with a cable. In order to grasp the motion of this kind of tether system in detail, the tether can be effectively modeled as flexible body and dealt by multibody dynamic analysis. In the analysis and modeling of flexible body of tether, large deformation and large displacement must be considered. Multibody dynamic analysis such as Absolute Nodal Coordinate Formulation with an introduction of the effect of damping force formulation can be used to describe the motion behavior of a flexible body. In this study, a parameter identification technique via an experimental approach is proposed in order to verify the modeling method. An example of swing-up control using the genetic algorithm control approach is performed through simulation and experiment. The validity of the model and availability of motion control based on multibody dynamics analysis are shown by comparison between numerical simulation and experiment.
Go to article

This page uses 'cookies'. Learn more