Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 4
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Changes in body mass and body reserves of Little Auks (Alle alle) were studied throughout the breeding season. Body mass loss after chick hatching was analyzed with respect to two hypotheses: (1) mass loss reflects the stress of reproduction, (2) mass loss is adaptive by reducing power consumption during flight. Body mass of both males and females increased during incubation, dropped abruptly after hatching, and remained stable until the end of the chick-rearing period. These changes were largely due to change in mass of fat reserves. Body mass, fat, and protein reserves, when corrected for body size, did not differ between sexes at the end of incubation. Female size-corrected body mass at that time was correlated with peak body mass of chicks. The estimated energy savings for flight due to the decline in adult body mass after chick hatching were small compared with the total energy expenditure of adults feedings chicks, which did not support hypothesis (2). The contribution to chick feeding was not equal; the ratio of females to males caught with food for chicks was 1.8. Size-corrected body mass during chick-rearing was lower in females, proportional to their higher chick feeding effort compared with males. Females, in contrast to males, lost protein reserves during chick-rearing. Digestive tract mass of adults increased by half throughout the breeding period. These findings supported elements of hypothesis (1). Despite high energy expenditure rates, both sexes had about 10 g of fat reserves at the end of chick feeding. Body mass of both sexes was constant during the greater part of the chick-feeding period. It was suggested therefore that mass loss is regulated with respect to lower fat reserves required during chick-rearing.
Przejdź do artykułu

Abstrakt

In this paper, a novel bacterial foraging algorithm (BFA) based approach for robust and optimal design of PID controller connected to power system stabilizer (PSS) is proposed for damping low frequency power oscillations of a single machine infinite bus bar (SMIB) power system. This paper attempts to optimize three parameters (Kp, Ki, Kd) of PID-PSS based on foraging behaviour of Escherichia coli bacteria in human intestine. The problem of robustly selecting the parameters of the power system stabilizer is converted to an optimization problem which is solved by a bacterial foraging algorithm with a carefully selected objective function. The eigenvalue analysis and the simulation results obtained for internal and external disturbances for a wide range of operating conditions show the effectiveness and robustness of the proposed BFAPSS. Further, the time domain simulation results when compared with those obtained using conventional PSS and Genetic Algorithm (GA) based PSS show the superiority of the proposed design.
Przejdź do artykułu

Abstrakt

Transmission line loss minimization in a power system is an important research issue and it can be achieved by means of reactive power compensation. The unscheduled increment of load in a power system has driven the system to experience stressed conditions. This phenomenon has also led to voltage profile depreciation below the acceptable secure limit. The significance and use of Flexible AC Transmission System (FACTS) devices and capacitor placement is in order to alleviate the voltage profile decay problem. The optimal value of compensating devices equires proper optimization technique, able to search the optimal solution with less computational burden. This paper presents a technique to provide simultaneous or individual controls of basic system parameter like transmission voltage, impedance and phase angle, thereby controlling the transmitted power using Unified Power Flow Controller (UPFC) based on Bacterial Foraging (BF) algorithm. Voltage stability level of the system is defined on the Fast Voltage Stability Index (FVSI) of the lines. The IEEE 14-bus system is used as the test system to demonstrate the applicability and efficiency of the proposed system. The test result showed that the ocation of UPFC improves the voltage profile and also minimize the real power loss.
Przejdź do artykułu

Abstrakt

Harmonic minimisation in hybrid cascaded multilevel inverter involves complex nonlinear transcendental equation with multiple solutions. Hybrid cascaded multilevel can be implemented using reduced switch count when compared to traditional cascaded multilevel inverter topology. In this paper Biogeographical Based Optimisation (BBO) technique is applied to Hybrid multilevel inverter to determine the optimum switching angles with weighted total harmonic distortion (WTHD) as the objective function. Optimisation based on WTHD combines the advantage of both OMTHD (Optimal Minimisation of Total Harmonic Distortion) and SHE (Selective Harmonic Elimination) PWM. WTHD optimisation has the benefit of eliminating the specific lower order harmonics as in SHEPWM and minimisation of THD as in OMTHD. The simulation and experimental results for a 7 level multilevel inverter were presented. The results indicate that WTHD optimization provides both elimination of lower order harmonics and minimisation of Total Harmonic Distortion when compared to conventional OMTHD and SHE PWM. Experimental prototype of a seven level hybrid cascaded multilevel inverter is implemented to verify the simulation results.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji