Search results

Filters

  • Journals
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In the paper, a solution of the time-fractional single-phase-lagging heat conduction problem in finite regions is presented. The heat conduction equation with the Caputo time-derivative is complemented by the Robin boundary conditions. The Laplace transform with respect to the time variable and an expansion in the eigenfunctions series with respect to the space variable was applied. A method for the numerical inversion of the Laplace transforms was used. Formulation and solution of the problem cover the heat conduction in a finite slab, hollow cylinder and hollow sphere. The effect of the fractional order of the Caputo derivative and the phase-lag parameter on the temperature distribution in a slab has been numerically investigated.
Go to article

Abstract

Main goal of the paper is to present the algorithm serving to solve the heat conduction inverse problem. Authors consider the heat conduction equation with the Riemann-Liouville fractional derivative and with the second and third kind boundary conditions. This type of model with fractional derivative can be used for modelling the heat conduction in porous media. Authors deal with the heat conduction inverse problem, which, in this case, consists in identifying an unknown thermal conductivity coefficient. Measurements of temperature, in selected point of the region, are the input data for investigated inverse problem. Basing on this information, a functional describing the error of approximate solution is created. Minimizing of this functional is necessary to solve the inverse problem. In the presented approach the Ant Colony Optimization (ACO) algorithm is used for minimization.
Go to article

This page uses 'cookies'. Learn more