Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 21
items per page: 25 50 75
Sort by:

Abstract

About 1600 joint fractures were measured in tillites of the Upper Hecla Hoek Formation on the southern shore of Bellsund. Measurements were collected in 12 areas between the Renardbreen and Tjörndalen. Ray diagrams and contour diagrams of joint fractures, and contour diagrams of joint fractures after rotation to pre-folding position were made for each area. The preliminary analysis of diagrams indicates 2 conjugated joint sets: ca. 60°—120° and 0°—30°. This joint system is probably older than folding and was originated under ENE—WSW to NE—SW stress.
Go to article

Abstract

As a machining technology, welding can cause serious accidents by overloading or operation mistakes. Through analyzing the causes of various welding accidents, we found that the major cause for damage imposed after welding parts are loaded is the fracture of materials. Therefore, studying the influence of welding residual stress on the fracture property of materials is of great significance. This paper applied the digital image correlation technique to study the fracture property of welding parts under the influence of welding residual stress. In addition, standard parts and welding parts were selected to carry out a contrast experiment. Room temperature tensile tests were performed on both standard parts and test pieces after residual stress measurement. Using displacement field and strain field data obtained through VIC-2D software, the stress intensity factor around the crack tip of each specimen under the conditions of small load was calculated and corresponding analysis was carried out.
Go to article

Abstract

The efficient protection (support reinforcement) of a wall and heading crossing ensures continuity of the production cycle, and that is a quick moving of the scraper conveyor to the wall. Using low or high bolting as a support reinforcement element in wall and heading crossings allows for the elimination of traditional methods of maintaining longwall-gate crossings, and therefore allows for the efficient use high performance modern wall complexes. The paper presents the long underground experience, of the Knurów–Szczygłowice mine of efficient support wall and heading crossing maintenance, which was bolted to the rock mass with the usage of two pairs of bolts, showing full technical and economical usefulness of this support reinforcement method. The article also highlights work safety and the increasingly common usage of endoscopies when specifying the range of crack areas which directly effects the proper choice in number, load-capacity and length of the used bolts. The underground studies the measurements of the reach of the zones of fracturing and roof stratification (using endoscopes and wire type stratification meters) and the laboratory tests (using the test stand) have allowed to determine the safety factor for maintenance of the longwall gangway crossing, directly resulting in the necessity to install additional reinforcement. The value of the safety factor Sbsc-ch greater than 1 is advantageous and safe, and the value less than or equal to 1 can lead to a significant deterioration of the conditions of maintenance of a wall and heading crossing which was bolted.
Go to article

Abstract

Lower Carboniferous limestone has been extracted in the “Czatkowice” open-pit hill-slope quarry in southern Poland since 1947, for the needs of metallurgical and building industries, as well as farming. We can distinguish two aquifers in the Czatkowice area: the Quaternary porous aquifer and the Carboniferous fissure-porous one. Two vertical zones representing different hydrodynamic characteristics can be indentified in the Carboniferous formations. One is a weathering zone and the other one the zone of fissures and interbedding planes. Groundwater inflows into the quarry workings have been observed at the lowest mining level (+315 m above the sea level (asl)) for over 30 years. This study concerns two hypotheses of the sources of such inflows originating either from (a) the aeration zone or from (b) the saturation zone. Inflows into the quarry combine into one stream flowing gravitationally to the doline under the pile in the western part of the quarry. This situation does not cause a dewatering need. Extending eastward mining and lowering of the exploitation level lead to increased inflows.
Go to article

Abstract

A mathematical model of the process of thermoelastic deformation and dissipative heating of elastomeric structural elements are assumed . The methods of prediction the longevity of structures based on the use of entropy fracture criteria are proposed. For solving of the link thermoelasticity problem of method of successive approximations is used.
Go to article

Abstract

This paper presents a numerical investigation of the effects of lamination orientation on the fracture behaviour of rectangular steel wires for civil engineering applications using finite element (FE) analysis. The presence of mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture with an opening at the bottom/pointed end of the V-shape at the mid-thickness across-the-width lamination location. The presence of mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the lamination location. The FE fracture behaviour prediction approach adopted in this work provides an understanding of the effects of lamination orientation on the fracture behaviour of wires for civil engineering applications which cannot be understood through experimental investigations because it is impossible to machine laminations in different orientations into wire specimens.
Go to article

Abstract

This paper presents a numerical investigation of fracture criterion influence on perforation of high-strength 30PM steel plates subjected to 7.6251 mm Armour Piercing (AP) projectile. An evaluation of four ductile fracture models is performed to identify the most suitable fracture criterion. Included in the paper is the Modified Johnson-Cook (MJC) constitutive model coupled separately with one of these fracture criteria: the MJC fracture model, the Cockcroft-Latham (CL), the maximum shear stress and the constant failure strain models. A 3D explicit Lagrangian algorithm that includes both elements and particles, is used in this study to automatically convert distorted elements into meshless particles during the course of the computation. Numerical simulations are examined by comparing with the experimental results. The MJC fracture model formulated in the space of the stress triaxiality and the equivalent plastic strain to fracture were found capable of predicting the realistic fracture patterns and at the same time the correct projectile residual velocities. However, this study has shown that CL one parameter fracture criterion where only one simple material test is required for calibration is found to give good results as the MJC failure criterion. The maximum shear stress fracture criterion fails to capture the shear plugging failure and material fracture properties cannot be fully characterized with the constant fracture strain.
Go to article

Abstract

The effects of the miniature channel-shaped scratches not detectable by the present inline electromagnetic defect detection system employed for wires’ surface defect detection on the fracture behaviour of the wires for civil engineering applications were investigated numerically. Finite element analysis revealed that both miniature channel-shaped across-the-thickness and across-the-width scratches change the fracture behaviour of the wires in terms of the fracture initiation locations and fracture process sequence. However, miniature across-the-thickness scratches does not affect the fracture shape of the wire while miniature across-the-width scratches changed the wires’ cup and cone fracture to a fracture shape with a predominantly flat fracture. These results provide an understanding of the fracture behaviour of wires with miniature scratches and serve as an alternative or a complimentary tools to experimental or fractographic failure analysis of wires with miniatures scratches which are difficult to carry out in the laboratory due to the sizes of the scratches.
Go to article

Abstract

Tungsten heavy alloys comprising tungsten, nickel and ferrous were modified, where molybdenum was added in varying weight proportions keeping the ratio of Ni: Fe (8:2) constant. The powders were mixed in a high-energy ball mill and were further fabricated using the spark plasma sintering (SPS) method at a peak temperature of 1000°C with heating rate of 100°C/min. The details of the microstructure and mechanical properties of these various alloy compositions were studied. With the increasing weight composition of the Mo in the alloy, the relative density of the alloy increased with a significant improvement in all the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and hardness improved significantly with increase in the proportion of Mo; however, a reduction in elongation percentage was observed. The maximum strength of 1250 MPa UTS was observed in the alloy with a Mo proportion of 24%. The heavy alloy unmixed with Mo has shown distinct white and grey regions, where white (W) grain is due to tungsten and grey region is a combinatorial effect of Ni and Fe. Upon addition of Mo, the white and gray phase differences started to minimize resulting in deep gray and black ‘C’-phase structures because of homogenization of the alloy. The main fracture mode found during this investigation in the alloys was inter-granular mode.
Go to article

Abstract

In this work, the change of the structure and microhardness of Ti6Al4V titanium alloy after remelting and remelting with SiC alloing by electric arc welding (GTAW method) was studied. The current intensity equal 100 A and fixed scan speed rate equal 0,2 m/min has been used to remelting surface of the alloy. Change of structure were investigated by optical and scanning electron microscopy. Microhardness test showed, that the remelting of the surface does not change the hardness of the alloy. Treated by GTAW SiC alloying leads to the formation of hard (570 HV0, 1) surface layer with a thickness of 2 mm. The resulting surface layer is characterized by diverse morphology alloyed zone. The fracture of alloy after conventional heat treatment, similarly to fracture after remelting with GTAW is characterized by extremely fine dimples of plastic deformation. In the alloyed specimens the intergranular and crystalline fracture was identified.
Go to article

Abstract

The paper deals with the properties and microstructure of Reactive Powder Concrete (RPC), which was developed at Cracow University of Technology. The influence of three different curing conditions: water (W), steam (S) and autoclave (A) and also steel fibres content on selected properties of RPC was analyzed. The composite characterized by w/s ratio equal to 0.20 and silica fume to cement ratio 20%, depending on curing conditions and fibres content, obtained compressive strength was in the range from 200 to 315 MPa, while modulus of elasticity determined during compression was about 50 GPa. During three-point bending test load-deflection curves were registered. Base on aforementioned measurements following parameters were calculated: flexural strength, stress at limit of proportionality (LOP), stress at modulus of rapture (MOR), work of fracture (WF), and toughness indices I₅, I₁₀ and I₂₀. Both amount of steel fibres and curing conditions influence the deflection of RPC during bending.
Go to article

Abstract

The results of bearing capacity, deformability and fracture toughness of reinforced concrete beams with the external reinforcement in the form of steel cut and stretchy sheet, obtained due to the conducting of the experiment and mathematical simulation which were made of concrete of C40/50 class are given in the article. Mathematical simulation of beam structures is done on the basis of the deformation model which allows to conduct calculations of the unified methodological positions of different elements with diverse configuration of cross section and reinforcement as well as take into consideration elastic and plastic properties of concrete and reinforcement, assessing the actual stress-strain state of sections of reinforced concrete elements at different loading levels, including ultimate one. The deformation model is based on the actual diagrams use of concrete and reinforcement materials deformation and conditions of efforts balance in the normal section and hypothesis of flat sections. The theoretical value of bearing capacity and deformability, obtained as a result of the mathematical simulation was compared to the experimental data. The satisfactory coincidence of the mathematical calculation of bearing capacity, deformability, fracture toughness and experimental data gives an opportunity to use the algorithm not only for beam structures with bar reinforcement but also for beam structures with the external reinforcement in the form of steel cut and stretchy sheet.
Go to article

Abstract

The ductility of High Performance Concrete (HPC) can develop both in tension and compression.This aspect is evidenced in the present paper by measuring the mechanical response of normalvibrated concrete (NC), self-compacting concrete (SC) and some HPCs cylindrical specimensunder uniaxial and triaxial compression. The post-peak behaviour of these specimens is definedby a non-dimensional function that relates the inelastic displacement and the relative stress duringsoftening. Both for NC and SC, the increase of the fracture toughness with the confinement stressis observed. Conversely, all the tested HPCs, even in absence of confinement, show practically thesame ductility measured in normal and self-compacting concretes with a confining pressure. Thus,the presence of HPC in compressed columns is itself sufficient to create a sort of active distributedconfinement.
Go to article

Abstract

The article presents the results of research concerning AlCu4MgSi alloy ingots produced using horizontal continuous casting process under variable conditions of casting speed and cooling liquid flow through the crystallizer. The mechanical properties and structure of the obtained ingots were correlated with the process parameters. On the basis of the obtained results, it has been shown that depending on the cooling rate and the intensity of convection during solidification, significant differences in the mechanical properties and structure and of the ingots can occur. The research has shown that, as the casting speed and the flow rate of the cooling liquid increase, the hardness of the test samples decreases, while their elongation increases, which is related to the increase of the average grain size. Also, the morphology of the intermetallic phases precipitations lattice, as well as the centerline porosity and dendrite expansion, significantly affect the tensile strength and fracture mechanism of the tested ingots.
Go to article

Abstract

Sound joint of hollow-extruded 6005A-T6 aluminum alloy was achieved by friction stir welding and its high cycle fatigue performance was mainly investigated. As a result, the joint fatigue limit reaches 128.1 MPa which is 55% of the joint tensile strength. The fatigue fracture mainly occurs at the boundary between the stir zone and thermo-mechanically affected zone due to the large difference in the grain size. This difference is caused by the layered microstructure of the base material. The shell pattern with parallel arcs is the typical morphology in the fracture surface and the distance between arcs is increased with the increase of stress level. The specimen with the fracture located in the stir zone possesses a relatively low fatigue life.
Go to article

Abstract

New graphite tools were designed and produced to fabricate a semi-finished product from which nine cutting inserts were obtained in one spark plasma sintering process. As a result, WC-5Co cemented carbides were spark plasma sintered and the effect of various sintering parameters such as compacting pressure, heating rate and holding time on the main mechanical properties were investigated. It was shown that WC-5Co cemented carbides spark plasma sintered at 1200°C, 80 MPa, 400°C/min, for 5 min are characterized by the best relation of hardness (1861 ±10 HV30) and fracture toughness (9.30 MPa·m1/2). The microstructure of these materials besides the WC ceramic phase and Co binder phase consists of a synthesized Co3W3C complex phase. Comparison with a commercial WC-6Co cutting insert fabricated by conventional powder metallurgy techniques shows that spark plasma sintering is a very effective technique to produce materials characterized by improved mechanical properties.
Go to article

Abstract

Nominal strength reduction in cross ply laminates of [0/90]2s is observed in tensile tests of glass fiber composite laminates having central open hole of diameters varying from 2 to 10 mm. This is well known as the size effect. The extended finite element method (XFEM) is implemented to simulate the fracture process and size effect (scale effect) in the glass fiber reinforced polymer laminates weakened by holes or notches. The analysis shows that XFEM results are in good agreement with the experimental results specifying nominal strength and in good agreement with the analytical results based on the cohesive zone model specifying crack opening displacement and the fracture process zone length.
Go to article

Abstract

The paper presents the results of the Ti10V2Fe3Al alloy crack resistance assessment using the Rice’s J-integral technique as a function of morphology and volume fraction of α-phase precipitates. Titanium alloys characterized by the two-phase structure α + β are an interesting alternative to classic steels with high mechanical properties. Despite the high manufacturing costs and processing of titanium alloys, they are used in heavily loaded constructions in the aerospace industry due to its high strength to density ratio. The literature lacks detailed data on the influence of microstructure and, in particular, the morphology of α phase precipitates on fracture toughness in high strength titanium alloys. In the following work an attempt was made to determine the correlation between the microstructure and resistance to cracking in the Ti10V2Fe3Al alloy.
Go to article

Abstract

Fatigue investigations of two 4XXX0-series aluminum alloys (acc. PN-EN 1706) within a range of fewer than 104 cycles at a coefficient of cycle asymmetry of R = –1 were performed in the current paper. The so-called modified low-cycle test, which provided additional information concerning the fatigue life and strength of the tested alloys, was also performed. The obtained results were presented in the form of diagrams: stress amplitude σa – number of cycles before damage N. On the basis of the microscopic images of sample fractures, the influence of the observed casting defects on the decrease of cycle numbers at a given level of stress amplitude were analyzed. Based on the images and dimensions of the observed defects, stress intensity factor KI was analytically determined for each. Their numerical models were also made, and stress intensity factor KI was calculated by the finite element method (FEM).
Go to article

Abstract

The paper presents the development procedures for both virtual 3D-CAD and material models of fractured segments of human spine formulated with the use of computer tomography (CT) and rapid prototyping (RP) technique. The research is a part of the project within the framework of which a database is developed, comprising both 3D-CAD and material models of segments of thoracic-lumbar spine in which one vertebrae is subjected to compressive fracture for a selected type of clinical cases. The project is devoted to relocation and stabilisation procedures of fractured vertebrae made with the use of ligamentotaxis method. The paper presents models developed for five patients and, for comparison purposes, one for a normal spine. The RP material models have been built basing on the corresponding 3D-CAD ones with the use of fused deposition modelling (FDM) technology. 3D imaging of spine segments in terms of 3D-CAD and material models allows for the analysis of bone structures, classification of clinical cases and provides the surgeons with the data helpful in choosing the proper way of treatment. The application of the developed models to numerical and experimental simulations of relocation procedure of fractured vertebra is planned.
Go to article

This page uses 'cookies'. Learn more