Search results


  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:


The research involved coal from 11 coal mines in the USCB in Poland, intended for combustion in power plants and for home furnaces. It has been stated that the content of As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb and Zn in the ash of coal fines from the USCB with a density of <1.30 × 103 kg/m3 is the largest, and in the ash fraction with a density >2.00 × 103 kg/m3 is the smallest The fraction ash of coal fine with a density> 2.00 × 103 kg/m3 has the greatest impact on the content of As, Cd, Co, Cr, Mo, Pb and Zn in whole coal fines from the USCB. In turn, the largest impact on the content of Cu, Ni and Sb in whole fine coal ash has the fraction of coal fine having a density of 1.60–2.00 × 103 kg/m3 (for Cu) and fraction with a density <1.35 × 103 kg/m3 (Ni and Sb). The main carriers of elements in fine coal ash, thus in future furnace waste, are the grains of aluminosilicates and iron oxides resulting from the combustion of probably fusinite and semifusinite and the combustion of adhesions of these macerals with dolomite, ankerite and pyrite. The purification of fine coal from the matter with a density >2.00 × 103 kg/m3 may reduce the sulfur content (by 40%), the content of main element oxides (from 33% to 85%) and the content of ecotoxic elements (from 7% to 59%) in fine coal ash, i.e. in potential furnace wastes. Due to the small content of mineral matter, ash and sulfur in coal, small content of Al, Fe, Ca, Mg, Na, K, P oxides and high content of SiO2 in coal ash, low value of the Rogi sinterability index, small inclination of coal fine to slag the furnaces and boiler fouling by sludge, the investigated coal was favorable for technological reasons, fuel in power plants and for home furnaces
Go to article

This page uses 'cookies'. Learn more