Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

The article presents the use of the Mamdani fuzzy reasoning model to develop a proposal of a system controlling partnering relations in construction projects. The system input variables include: current assessments of particular partnering relation parameters, the weights of these parameters’ impact on time, cost, quality and safety of implementation of construction projects, as well as the importance of these project assessment criteria for its manager. For each of the partnering relation parameters, the project’s manager will receive controlrecommendations. Moreover, the parameter to be improved first will be indicated. The article contains a calculation example of the system’s operations.
Go to article

Abstract

The operational mineral deposit reconnaissance tends to evaluate its parameters to conduct safe and profitable production. Particular deposit parameters, important from the point of mineral deposit management, are estimated on the basis of observations carried out by mining geological surveys. These observations usually involve sampling, drilling, laboratory analyses and others. The use of fuzzy description to assess the parameters of the mineral deposit was proposed in the paper. In the fuzzy characteristics, an imprecise descriptive description appeared in place of a particular numerical quantity. This approach was used to description of the ore deposit features (metal content, volume, and metal yield) by assigning them specific characteristic functions, whose distributions were based on basic statistical quantities. Characteristic functions can be used to prepare operational strategies for any configuration of required deposit parameters resulting from the production management needs. For this purpose, selected logical operators of fuzzy sets were used. In the next approach to fuzzy modeling, an opportunity to characterize the deposit in a subjective approach was indicated, where the assessment of the deposit parameters is based on rough, in some way, discretionary observation and evaluation. Such model construction enabled the overall assessment of the deposit from the point of view of any parameters. Through the implementation of appropriate inference rules, adequate fuzzy control planes were obtained, which may also be useful in the context of operational mine strategy planning.
Go to article

Abstract

An original fuzzy team control model is presented in this article. The model is based on a non-traditional combination of classical and contemporary achievements of management and mathematical theories of fuzzy logic and fuzzy sets. In methodological terms, the article also offers a set of tools for measuring and evaluating both team performance and the effectiveness of the team control system in the organization. Fuzzy tools and techniques for decision-making, studying of hidden effects and joint influences, and quantification of evaluations are employed in this set of tools. The suggested fuzzy model contributes to overcoming theoretical deficits on the issues of team control, and the methodology of team control fills a gap in the toolkit of team management. The results from verification of the fuzzy team control model at a small-sized Bulgarian enterprise are also discussed in this article. They indicate that it is possible to develop a fuzzy model for team control, increasing the effectiveness of the team control system in the enterprise.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The paper focuses on the problem of robust fault detection using analytical methods and soft computing. Taking into account the model-based approach to Fault Detection and Isolation (FDI), possible applications of analytical models, and first of all observers with unknown inputs, are considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty of soft computing models (neural networks and neuro-fuzzy networks). It is shown that based on soft computing models uncertainty defined as a confidence range for the model output, adaptive thresholds can be described. The paper contains a numerical example that illustrates the effectiveness of the proposed approach for increasing the reliability of fault detection. A comprehensive simulation study regarding the DAMADICS benchmark problem is performed in the final part.
Go to article

Abstract

The application of artificial intelligence (AI) in modeling of various machining processes has been the topic of immense interest among the researchers since several years. In this direction, the principle of fuzzy logic, a paradigm of AI technique, is effectively being utilized to predict various performance measures (responses) and control the parametric settings of those machining processes. This paper presents the application of fuzzy logic to model two non-traditional machining (NTM) processes, i.e. electrical discharge machining (EDM) and electrochemical machining (ECM) processes, while identifying the relationships present between the process parameters and the measured responses. Moreover, the interaction plots which are developed based on the past experimental observations depict the effects of changing values of different process parameters on the measured responses. The predicted response values derived from the developed models are observed to be in close agreement with those as investigated during the past experimental runs. The interaction plots also play significant roles in identifying the optimal parametric combinations so as to achieve the desired responses for the considered NTM processes.
Go to article

This page uses 'cookies'. Learn more