Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Go to article

Abstract

This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2nanoparticles, the second one contained Al2O3nanoparticles, and the third one the Cu nanoparticles.
Go to article

Abstract

Short state-of-the-art on the enhancement of condensation heat transfer techniques by means of condensate drainage is presented in this paper. The electrohydrodynamic (EHD) technique is suitable for dielectric media used in refrigeration, organic Rankine cycles and heat pump devices. The electric field is commonly generated in the case of horizontal tubes by means of a rod-type electrode or mesh electrodes. Authors proposed two geometries in the presented own experimental investigations. The first one was an electrode placed just beneath the tube bottom and the second one consisted of a horizontal finned tube with a double electrode placed beneath the tube. The experimental investigations of these two configurations for condensation of refrigerant R-123 have been accomplished. The obtained results confirmed that the application of the EHD technique for the investigated tube and electrode arrangement caused significant increase in heat transfer coefficient. The condensation enhancement depends both on the geometry of the electrode system and on the applied voltage.
Go to article

Abstract

The combined effect of conjugation, external magnetic field and oscillation on the enhancement of heat transfer in the laminar flow of liquid metals between parallel plate channels is analyzed. In order to make our results useful to the design engineers, we have considered here only the wall materials that are widely employed in liquid metal heat exchangers. Indeed, all the results obtained through this mathematical investigation are in excellent agreement with the available experimental results. The effective thermal diffusivity κ_e is increased by 3×10^6 times due to oscillation and that the heat flux as high as 1.5×10^10 (W/m^2) can be achieved. Based on our investigation, we have recommended the best choice of liquid metal heat carrier, wall material and its optimum thickness along with the optimum value of the frequency to maximize the heat transfer rate. At the optimum frequency, by choosing a wall of high thermal conductivity and optimum thickness, an increase of 19.98% in κ_e can be achieved. Our results are directly relevant to the design of a heat transfer device known as electromagnetic dream pipe which is a very recent development.
Go to article

This page uses 'cookies'. Learn more