Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

News might trigger jump arrivals in financial time series. The “bad” news and “good” news seem to have distinct impact. In the research, a double exponential jump distribution is applied to model downward and upward jumps. Bayesian double exponential jump-diffusion model is proposed. Theorems stated in the paper enable estimation of the model’s parameters, detection of jumps and analysis of jump frequency. The methodology, founded upon the idea of latent variables, is illustrated with simulated data.
Go to article

Abstract

A Bayesian stochastic volatility model with a leverage effect, normal errors and jump component with the double exponential distribution of a jump value is proposed. The ready to use Gibbs sampler is presented, which enables one to conduct statistical inference. In the empirical study, the SVLEDEJ model is applied to model logarithmic growth rates of one month forward gas prices. The results reveal an important role of both jump and stochastic volatility components.
Go to article

Abstract

In the paper we present and apply a Bayesian jump-diffusion model and stochastic volatility models with jumps. The problem of how to classify an observation as a result of a jump is addressed, under the Bayesian approach, by introducing latent variables. The empirical study is focused on the time series of gas forward contract prices and EUA futures prices. We analyse the frequency of jumps and relate the moments in which jumps occur to calendar effects or political and economic events and decisions. The calendar effects explain many jumps in gas contract prices. The single jump is identified in the EUA futures prices under the SV-type models. The jump is detected on the day the European Parliament voted against the European Commission’s proposal of backloading. The Bayesian results are compared with the outcomes of selected non-Bayesian techniques used for detecting jumps.
Go to article

This page uses 'cookies'. Learn more