Search results

Filters

  • Journals

Search results

Number of results: 1
items per page: 25 50 75
Sort by:

Abstract

A non-classical model of interval estimation based on the kernel density estimator is presented in this paper. This model has been compared with interval estimation algorithms of the classical (parametric) statistics assuming that the standard deviation of the population is either known or unknown. The non-classical model does not have to assume belonging of random sample to a normal distribution. A theoretical basis of the proposed model is presented as well as an example of calculation process which makes possible determining confidence intervals of the expected value of long-term noise indicators Aden and LN. The statistical analysis was carried out for 95% interval widths obtained by using each of these models. The inference of their usefulness was performed on the basis of results of non-parametric statistical tests at significance level α = 0.05. The data used to illustrate the proposed solutions and carry out the analysis were results of continuous monitoring of traffic noise recorded in 2004 in one of the main arteries of Krakow in Poland.
Go to article

This page uses 'cookies'. Learn more