Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Vegetable oils belong to a large group of substances consumed on a daily basis. World vegetable oil production is soaring, reducing the popularity of animal fats. Heavy metals pose a threat to human health. It is estimated that about 80% of the daily dose of heavy metals enters the human body through the consumption of food. Hence, it is necessary to monitor their concentrations in food products. Besides, the presence of heavy metals is thought to have possible negative influence on the quality of oils, especially on their taste and smell. Heavy metals may also accelerate the process of the rancidifiction of oils. Rapeseeds, soybean seeds and linseeds were selected for the analysis because they are one of the most popular oilseeds and at the same time they differ in terms of growing conditions. The analyses of different fractions and the ready-made product were also performed. The aim of the study was to determine the variation in concentrations of heavy metals, iron and manganese in different fractions during production. The significant concentrations of iron, manganese and zinc were observed in oilseeds. It was also shown that during different stages of oil refining the concentrations of metals decrease. The concentrations of metals are compared with those reported in literature.
Go to article

Abstract

Investigations were carried out to evaluate the performance of a low heat rejection (LHR) diesel engine consisting of different versions, such as ceramic coated cylinder head engine-LHR-1-Air gap insulated piston and air gap insulated liner-LHR-2- and Ceramic coated cylinder head, air gap insulated piston and air gap insulated liner -LHR-3 with degrees of insulation with normal temperature condition of linseed oil with varied injection pressure. Performance parameters were determined at various magnitudes of brake mean effective pressure. Pollution levels of smoke and oxides of nitrogen (NOx) were recorded at the peak load operation of the engine. Combustion characteristics of the engine were measured with TDC (top dead centre) encoder, pressure transducer, console and special pressure-crank angle software package. Conventional engine (CE) showed deteriorated performance, while LHR engine showed improved performance at recommended injection timing of 27 degrees bTDC and recommend injection pressure of 190 bar with vegetable oil operation, when compared with CE with pure diesel operation. Peak brake thermal efficiency increased by 14%, smoke levels decreased by 10% and NOx levels increased by 30% with LHR engine at an injection pressure of 270 bar when compared with pure diesel operation on CE at manufacturer's recommended injection timing.
Go to article

This page uses 'cookies'. Learn more