Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Coal combustion processes are the main source of mercury emission to the environment in Poland. Mercury is emitted by both power and heating plants using hard and brown coals as well as in households. With an annual mercury emission in Poland at the level of 10 Mg, the households emit 0.6 Mg. In the paper, studies on the mercury release in the coal and biomass combustion process in household boilers were conducted. The mercury release factors were determined for that purpose. For the analyzed samples the mercury release factors ranged from 98.3 to 99.1% for hard coal and from 99.5% to 99.9% for biomass, respectively. Due to the high values of the determined factors, the amount of mercury released into the environment mainly depends on the mercury content in the combusted fuel. In light of the obtained results, the mercury content in the examined hard coals was 6 times higher than in the biomass (dry basis). Taking the calorific value of fuels into account, the difference in mercury content between coal and biomass decreased, but its content in coal was still 4 times higher. The mercury content determined in that way ranged from 0.7 to 1.7 μg/MJ for hard coal and from 0.1 to 0.5 μg/MJ for biomass, respectively. The main opportunity to decrease the mercury emissions from households is offered by the use of fuels with a mercury content that is as low as possible, as well as by a reduction of fuel consumption. The latter could be obtained by the use of modern boilers as well as by the thermo-modernization of buildings. It is also possible to partially reduce mercury emissions by using dust removal devices.
Go to article

Abstract

In the processes of coal mining, preparation and combustion, the rejects and by-products are generated. These are, among others, the rejects from the coal washing and dry deshaling processes as well as the coal combustion by-products (fly ash and slag). Current legal and industry regulations recommend determining the content of mercury in them. The regulations also define the acceptable content of mercury. The aim of the paper was to determine the mercury content in the rejects derived from the coal cleaning processes as well as in the combustion by-products in respect of their utilization. The mercury content in the representative samples of the rejects derived from the coal washing and dry deshaling processes as well as in the coal combustion by products derived from 8 coal-fired boilers was determined. The mercury content in the rejects from the coal washing process varied from 54 to 245 μg/kg, (the average of 98 μg/kg) and in the rejects from the dry deshaling process it varied from 76 to 310 μg/kg (the average of 148 μg/kg). The mercury content in the fly ash varied from 70 to 1420 μg/kg, (the average of 567 μg/kg) and in the slag it varied from 8 to 58 μg/kg (the average of 21 μg/kg). At the moment, in light of the regulations from the point of view of mercury content in the rejects from the coal preparation processes and in the coal combustion by-products, there are no significant barriers determining the way of their utilization. Nevertheless, in the future, regulations limiting the maximum content of mercury as well as the acceptable amount of leachable mercury may be introduced. Therefore, preparing for this situation by developing other alternative methods of using the rejects and by-products is recommended.
Go to article

Abstract

Work is being carried out on possibilities of limiting the content of mercury in hard coal products by gravity concentration of run-of-mine coal in the Branch of the Institute of Mechanized Construction and Rock Mining in Katowice and on the Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow. Under domestic industrial conditions, gravity concentration is carried out with heavy medium liquids and in jigs. Preliminary - pilot studies have shown the possibility of mercury removal also by using the dry deshaling method involving vibratory air separators. Mercury is mainly found in the pyrite and the rubble formed by the mineral carbon, but also in the organic carbon. Some of it is located in layers of coal roof fields, which in the course of their exploitation go to coal. The mercury removal efficiency during the gravity concentration process will depend on the decomposition of the listed components in the density fractions. The paper presents the results of investigations of total mercury and total sulphur content in the separated coal fractions from four mines. These contents were determined in fractions: –1.5 g/cm3 (conventionally clean coal – concentrate), 1.5–1.8 g/cm3 (conventionally middlings) and +1.8 g/cm3 (conventionally rock – waste). The results are summarized in Tables 3–5 and in Charts 1–4. Conversely, graphs 5-8 show the relationship between mercury content and total sulphur content in the tested coal samples. The study, which can be called a preliminary analysis of the susceptibility of the coals to gravity concentration, showed that the dry deshaling method on the vibratory air separators would allow significant amounts of mercury accumulated in the middlings and waste fractions to be removed.
Go to article

Abstract

Nowadays, actions allowing for a reduction of anthropogenic mercury emission are taken worldwide. Great emphasis is placed on reducing mercury emission from the processes of energochemical coal conversion, mainly from the coal combustion processes. One of the methods which enable a reduction of anthropogenic mercury emission is the removal of mercury from coal before its conversion. It should be pointed out that mercury in hard coal may occur both in the organic and mineral matter. Therefore, a universal method should allow for the removal of mercury, combined in both ways, from coal. In the paper, a concept of the hybrid mercury removal process from hard coal was presented. The idea of the process is based on the combination of the coal cleaning process using wet or dry methods (first stage) and the thermal pretreatment process at a temperature in the range from 200 to 400 °C (second stage). In the first stage, a part of mercury occurring in the mineral matter is removed. In the second stage, a part of mercury occurring in the organic matter as well as in some inorganic constituents characterized by a relatively low temperature of mercury release is removed. Based on the results of the preliminary research, the effectiveness of the decrease in mercury content in coal in the hybrid process was estimated in the range from 36 to 75% with the average at the level of 58%. The effect of the decrease in mercury content in coal is much more significant when mercury content is referred to a low heating value of coal. So determined, the effectiveness was estimated in the range from 36 to 75% with the average at the level of 58%.
Go to article

Abstract

The aim of the study is to determine the mercury content in hard coal, randomly taken from the USCB and in by-products of hard coal mining (fresh mining waste), i.e. aggregates (gangue) and hard coal sludge and mining waste from the Siersza dump (weathered waste). The 34 samples were intended for analysis. The total mercury content and the amount of mercury leaching from solid samples was determined. The percentage of the leaching form in the total element content, i.e. the level of mercury release from the material (leaching level), was also calculated. The amount of mercury leaching was determined by a static method using a batch test 1:10. The highest possibility of leaching mercury is characterized by weathered waste from the Siersza dump and slightly lower analyzed hard coal from the U pper Silesian Coal Basin (USCB). For hard coal samples, the total mercury content is between 0.0275–0.1236 mg/kg. However, the amount of mercury leaching from coal samples is 0.0008–0.0077 mg/kg. The aggregate is characterized by a higher total mercury content in the finest fraction 0–6 mm, within 0.1377–0.6107 mg/kg and much lower in the 80-120 mm fraction, within 0.0508–0.1274 mg/kg. The amount of elution is comparable in both fractions and amounts to 0.0008–0.0057 mg/kg. Coal sludge has a total mercury content of 0.0937–0.2047 mg/kg. L ow leaching values of 0.0014–0.0074 mg/ kg are also observed. Weathered mining waste has a total mercury content of 0.0622–0.2987 mg/kg. However, leaching values from weathered waste are much higher than from fresh mining waste. This value is 0.0058–0.0165 mg/kg. In the hard coal extracted from U SCB, the leaching level is 4.7% on average. Mining waste is characterized by a large variation in the proportion of mercury leaching form and the differences result from the seasoning time of the samples. Waste or by-products of hard coal production, such as aggregates and coal sludge, show a mercury washout form at an average level of 1.7%. The proportion of leachable form in weathered waste increased strongly to 7.3%. Elution characteristics vary for different groups of materials tested. Factors such as the type and origin of samples, their granulometric composition and the seasoning time of the material are of fundamental importance and demonstrated in the work.
Go to article

This page uses 'cookies'. Learn more