Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The paper presents the investigations aimed at the determination of the effect of time and wavelength of ultrasound field on the value of capillary suction time (CST), sludge thickening and dry matter of the excess sludge subjected to the process of stabilization. The investigations were carried out on the excess sludge which comes from communal waste treatment plant. The sludge was exposed to ultrasound field, using ultrasound generator with power of 1500 W, frequency of 20 kHz and amplitude 39.42 μm (which corresponded to the amplitude of 100%). Sonication of the sludge was carried out for different amplitudes and sonication times. The non-conditioned sludge and the sludge initially conditioned with ultrasound field were subjected to the process of stabilization in laboratory flasks (V = 0.5 dm3) for the period of 10 days. On each day, sludge thickening and dewatering capacities were determined. The sludge subjected to the effect of ultrasound field exhibited elevated levels of CST. However, the sonication time had positive effect on the increase in the degree of thickening for each of the amplitudes studied. Also, the process of stabilization positively affected final thickening and dewatering of the sludge.
Go to article

Abstract

The essence of the methane fermentation course is the phase nature of changes taking place during the process. The biodegradation degree of sewage sludge is determined by the effectiveness of the hydrolysis phase. Excess sludge, in the form of a flocculent suspension of microorganisms, subjected to the methane fermentation process show limited susceptibility to the biodegradation. Excess sludge is characterized by a significant content of volatile suspended solids equal about 65 ÷ 75%. Promising technological solution in terms of increasing the efficiency of fermentation process is the application of thermal modification of sludge with the use of dry ice. As a result of excess sludge disintegration by dry ice, denaturation of microbial cells with a mechanical support occurs. The crystallization process takes place and microorganisms of excess sludge undergo the so-called “thermal shock”. The aim of the study was to determine the effect of dry ice disintegration on the course of the methane fermentation process of the modified excess sludge. In the case of dry ice modification reagent in a granular form with a grain diameter of 0.6 mm was used. Dry ice was mixed with excess sludge in a volume ratio of 0.15/1, 0.25/1, 0.35/1, 0.45/1, 0.55/1, 0.65/1, 0.75/1, respectively. The methane fermentation process lasting for 8 and 28 days, respectively, was carried out in mesophilic conditions at 37°C. In the first series untreated sludge was used, and for the second and third series the following treatment parameters were applied: the dose of dry ice in a volume ratio to excess sludge equal 0.55/1, pretreatment time 12 hours. The increase of the excess sludge disintegration degree, as well as the increase of the digestion degree and biogas yield, was a confirmation of the supporting operation of the applied modification. The mixture of reactant and excess sludge in a volume ratio of 0.55/1 was considered the most favorable combination. In relation to not prepared sludge for the selected most favorable conditions of excess sludge modification, about 2.7 and 3-fold increase of TOC and SCOD values and a 2.8-fold increase in VFAs concentration were obtained respectively. In relation to the effects of the methane fermentation of non-prepared sludge, for modified sludge, about 33 percentage increase of the sludge digestion degree and about 31 percentage increase of the biogas yield was noticed.
Go to article

Abstract

Anaerobic digestion is an important technology for the bio-based economy. The stability of the process is crucial for its successful implementation and depends on the structure and functional stability of the microbial community. In this study, the total microbial community was analyzed during mesophilic fermentation of sewage sludge in full-scale digesters. The digesters operated at 34–35°C, and a mixture of primary and excess sludge at a ratio of 2:1 was added to the digesters at 550 m3/d, for a sludge load of 0.054 m3/(m3·d). The amount and composition of biogas were determined. The microbial structure of the biomass from the digesters was investigated with use of next-generation sequencing. The percentage of methanogens in the biomass reached 21%, resulting in high quality biogas (over 61% methane content). The abundance of syntrophic bacteria was 4.47%, and stable methane production occurred at a Methanomicrobia to Synergistia ratio of 4.6:1.0. The two most numerous genera of methanogens (about 11% total) were Methanosaeta and Methanolinea, indicating that, at the low substrate loading in the digester, the acetoclastic and hydrogenotrophic paths of methane production were equally important. The high abundance of the order Bacteroidetes, including the class Cytophagia (11.6% of all sequences), indicated the high potential of the biomass for efficient degradation of lignocellulitic substances, and for degradation of protein and amino acids to acetate and ammonia. This study sheds light on the ecology of microbial groups that are involved in mesophilic fermentation in mature, stably-performing microbiota in full-scale reactors fed with sewage sludge under low substrate loading.
Go to article

This page uses 'cookies'. Learn more