Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper raises the issue of controlling rural low voltage microgrids in an optimal manner. The impact of different criterion functions, related to the amount of energy exchanged with the distribution system operator network, the level of active power losses, the amount of energy generated by different energy sources and the value of financial performance measures regarding the microgrid operation, on the choice of operating points for devices suggested by the optimization algorithm has been analyzed. Both island and synchronous microgrid operation modes are being considered. We propose two variants of the optimization procedure: the first one is based on the particle swarm optimization algorithm and centralized control logic, and the second one takes advantage of the decentralized approach and Monte Carlo methods. A comparison of the simulation results for two sample rural microgrids, obtained for different objective functions, microgrid operation modes and optimization procedure variants, with the use of prepared algorithm implementations, has been provided. The results show that the proper choice of an objective function can have a crucial impact on the optimization algorithm’s behavior, the choice of operating points and, as a consequence, on microgrid behavior as well. The choice of the proper form of the objective function is the responsibility of the person in charge of both the microgrid itself and its operation. This paper can contribute towards making correct decisions in this area. Generally, slightly better results have been achieved for the centralized control mode of operation. Nevertheless, the results also suggest that in many cases the approach based on distributed logic can return results that are better or sufficiently close to the ones provided by the centralized and more sophisticated approach.
Go to article

Abstract

Solar energy is widely available in nature and electricity can be easily extracted using solar PV cells. A fuel cell being reliable and environment friendly becomes a good choice for the backup so as to compensate for continuously varying solar irradiation. This paper presents simple control schemes for power management of the DC microgrid consisting of PV modules and fuel cell as energy sources and a hydrogen electrolyzer system for storing the excess power generated. The supercapacitor bank is used as a short term energy storage device for providing the energy buffer whenever sudden fluctuations occur in the input power and the load demand. A new power control strategy is developed for a hydrogen storage system. The performance of the system is assessed with and without the supercapacitor bank and the results are compared. A comparative study of the voltage regulation of the microgrid is presented with the controller of the supercapacitor bank, realized using a traditional PI controller and an intelligent fuzzy logic controller.
Go to article

This page uses 'cookies'. Learn more