Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Pulse electrochemical machining (PECM) provides an economical and e.ective method for machining high strength, heat-resistantmaterials into complex shapes such as turbine blades, die, molds and micro cavities. Pulse Electrochemical Machining involves the application of a voltage pulse at high current density in the anodic dissolution process. Small interelectrode gap, low electrolyte .ow rate, gap state recovery during the pulse o.-times lead to improved machining accuracy and surface .nish when compared with ECM using continuous current. This paper presents a mathematical model for PECM and employs this model in a computer simulation of the PECM process for determination of the thermal limitation and energy consumption in PECM. The experimental results and discussion of the characteristics PECM are presented.
Go to article

Abstract

The machining technology of electrochemical micromachining with ultra short voltage pulses (╬╝PECM) is based on the already well-established fundamentals of common electrochemical manufacturing technologies. The enormous advantage of the highest manufacturing precision underlies the fact of the extremely small working gaps achievable through ultra short voltage pulses in nanosecond duration. This describes the main difference with common electrochemical technologies. With the theoretical resolution of 10 nm, this technology enables high precision manufacturing.
Go to article

This page uses 'cookies'. Learn more