Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Alkali-aggregate reactivity (AAR) is one of the major causes of damage in concrete. Potential susceptibility of aggregates to this reaction can be determined using several methods. This study compares gravel alkali reactivity results obtained from different tests conducted on coarse aggregates with complex petrography. The potential for the reactivity in the aggregates was revealed in the chemical test using treatment with sodium hydroxide. Optical microscopy, scanning electron microscopy and X-ray diffraction were used to identify the reactive constituents. The expansion measured in the mortar bars test confirmed that the aggregate was potentially capable of alkali silica reactivity with consequent deleterious effect on concrete.
Go to article

Abstract

The results from the experimental research are presented in the abstract. The experimental research involved utilization of the sludge from the mine water treatment plant of Coal Quarry ČSA/Czechoslovak Army/ (hereinafter “ČSA”) and Coal Quarry Jana Švermy (hereinafter “JŠ”) in the segment of thermal insulation mortars. The mine water treatment is described below including chemical and mineralogical sludge composition as the additional component of the binding material in the polyurethane thermal insulation mortars. Furthermore the composition of experimental mixtures of the thermal insulation polyurethane mortar is presented in the work and its physical-mechanical properties. The monitored elements included the strength characteristics, heat conductivity coefficient λ, and water vapour diffusion coefficient μ.
Go to article

This page uses 'cookies'. Learn more