Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 178
items per page: 25 50 75
Sort by:

Abstract

A questionnaire inquiry on response to wind turbine noise was carried out on 361 subjects living in the vicinity of 8 wind farms. Current mental health status of respondents was assessed using Goldberg General Health Questionnaire GHQ-12. For areas where respondents lived, A-weighted sound pressure levels (SPLs) were calculated as the sum of the contributions from the wind power plants in the specific area. Generally, 33.0% of respondents were annoyed outdoors by wind turbine noise at the calculated A-weighted SPL of 31-50 dB, while indoors the noise was annoying to 21.3% of them. The proportion of subjects evaluating the noise produced by operative wind turbines as annoying decreased with increasing the distance from the nearest wind turbine (27.6% at the distance of 400-800 m vs 14.3% at the distance above 800 m, p < 0.016). On the other hand, the higher was the noise level, the greater was the percentage of annoyed respondents (14.0% at SPL up to 40 dB vs 28.1% at SPL of 40-45 dB, p < 0.016). Besides noise and distance categories, subjective factors, such as general attitude to wind turbines, sensitivity to landscape littering and current mental health status, were found to have significant impact on the perceived annoyance. About 50% of variance in annoyance rating might be explained by the aforesaid subjective factors.
Go to article

Abstract

This paper presents selected applications of the miniaturized hydraulic components offered by specialized manufacturers and some results of the authors' own research on microflows, including results of hydraulic microfeeder vibration measurements performed by the touchless method using a laser vibrometer. The latter was chosen in order to eliminate measuring instrument influence on the investigated microhydraulic object. Special attention was focused on acoustic problems: noise sources and methods of noise reduction.
Go to article

Abstract

The main objective of the research presented in this paper is to enhance driver-passengers comfort of a vehicle that in turn leads to better vehicle safety and stability. The focus was put on studying the interior vibration and noise contributions originated from tire-road and engine-transmission subsystems, due to their significant impact on the dynamic performance of the vehicle. The noise and vibration measurements were recorded at the driver’s head position and on the driver legs room. Furthermore, the influence of different tire types and road surface textures on the vehicle interior noise and vibration were considered. The results indicate that the widely used conventional engine mounts and tires in commercial vehicles cannot fulfill the conflicting requirements for the best isolation concerning both road surface and engine-transmission induced excitations. The values of driver’s head position sound pressure level and floor vibration acceleration broadband averages originate for engine-transmission are lower than that for tire-road interaction. Furthermore, the values of RMS, crest factor, kurtosis and IRI for the vehicle waveform were estimated for vehicle speeds, tire types and road surface textures. Moreover, the percentage contribution for both interior noise and vibration originated from tire-road interaction is higher than the one from vehicle engine-transmission system in all the vehicle speed range, tire type and road surface texture considered.
Go to article

Abstract

To overcome the detrimental influence of α impulse noise in power line communication and the trap of scarce prior information in traditional noise suppression schemes , a power iteration based fast independent component analysis (PowerICA) based noise suppression scheme is designed in this paper. Firstly, the pseudo-observation signal is constructed by weighted processing so that single-channel blind separation model is transformed into the multi-channel observed model. Then the proposed blind separation algorithm is used to separate noise and source signals. Finally, the effectiveness of the proposed algorithm is verified by experiment simulation. Experiment results show that the proposed algorithm has better separation effect, more stable separation and less implementation time than that of FastICA algorithm, which also improves the real-time performance of communication signal processing.
Go to article

Abstract

During work, earth-moving machines generate significant levels of noise and vibration that can be harmful for the operators; therefore the analysis of the noise and vibration conditions at the driving position is of great importance for the risk assessment. Compact loaders have become a pressing challenge as they are extremely hazardous referring to noise and vibration emissions, especially in their crawler version where further relevant noise and vibration are generated by the hard contact between track belt and ground. This paper reports the results of investigations carried out on three crawler compact loaders in different operating conditions. The main purpose was to investigate the noise and vibration values transmitted to the operators in some working conditions and use these data to obtain reliable estimates of the exposure to noise, to whole-body and to hand-arm transmitted vibrations, as well as to evaluate the related risk levels. Vibration signals transmitted to the operator were acquired on the seat and the machine control lever in accordance with the procedures specified in ISO 2631-1 and ISO 5349-1. At the same time, noise signals were acquired at the operator’s ear following the procedure reported in ISO 11201. Vibration signals were also acquired on the cabin floor with the main purpose to evaluate the effectiveness of the machine seats in reducing the vibration transmission. Finally, the noise and vibration exposure risks were evaluated on the basis of the health and safety requirements established in 2003/10/EC and 2002/44/EC Directives.
Go to article

Abstract

The tests reported in this paper were carried out to evaluate the exposure of soldiers to noise at operator and control positions during military field exercises. The tests were conducted during firing from a T-72 tank, a BWP-1 Infantry Fighting Vehicle, antitank guided missiles, a ZU-23-2K anti-aircraft gun, and a 2S1 GOZDZIK howitzer. The evaluation of noise exposure showed that the limit values of sound pressure level, referred to by both Polish occupational noise protection standards and the Pfander and Dancer hearing damage risk criteria developed for military applications, were repeatedly exceeded at the tested positions. Despite of the use of tank crew headgear, the exposure limit values of sound pressure level were exceeded for the crew members of the T-72 tank, the BWP-1 infantry fighting vehicle, and the 2S1 GOZDZIK howitzer. The results show that exposure of soldiers to noise during military field exercises is a potentially high hearing risk factor.
Go to article

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.
Go to article

Abstract

The course of design of an optocoupler's PSpice macromodel including noise sources is described. The PSpice macromodel is proposed for the low frequency range. The PSpice model of a MOSFET transistor was applied as the noise source type 1/fα in an optocoupler PSpice macromodel. In the enhanced macromodel the value of an exponent α can be changed in the range of 0.8-1.25.
Go to article

Abstract

The results of long-term continuous noise measurements in two selected schools are presented in the paper. Noise characteristics were measured continuously there for approximately 16 months. Measurements started eight months prior to the acoustic treatment of the school corridors of both schools. An evaluation of the acoustic climates in both schools, before and after the acoustic treatment, was performed based on comparison of these two periods of continuous measurements. The autonomous noise monitoring stations, engineered at the Multimedia Systems Department of the Gdańsk University of Technology were used for this purpose. Investigations of measured noise, especially its influence on hearing sense, assessed on ground of spectral analyses in critical bands, is discussed. Effects of occupational noise exposure, including the Temporary Threshold Shift simulation, are determined. The correlation of the above said measurement results with respective instantaneous noise levels is discussed, and concluding remarks are presented. Some additional indicators such as air pollution or video analysis aiming at the analysis of corridor occupancy are also measured. It should be remembered that excessive noise, or air pollution may be evidence of a dangerous event and may pose health risks.
Go to article

Abstract

The paper presents two theoretical models for traffic noise level distribution on curved horizontal roads. In the case of vehicles moving on a given route, one can consider, in terms of sound field, that the granular traffic is equivalent for short periods with a quasi-continuous noise flow. When computing and modelling the noise level generated by traffic on roads with complex trajectory, it is common to treat the route as a sum of small length road segments, each being assimilated with a linear noise source. This paper started from the assumption that the route can be decomposed into a sequence of linear and arc-shaped road segments, each of which is treated as a linear respectively curved noise source. An arc-shaped road segment is modelled by a tubular vibrating surface, of circular or rectangular section. In the case of rectangular section, the vibrating blade emits complex sounds on its both vertical sides and the generated sound field can be described more clearly, qualitatively and quantitatively, through intensity distribution. The theoretical models presented in the paper have direct application to the traffic noise prediction and noise maps drawing
Go to article

Abstract

The paper presents functionality and operation results of a system for creating dynamic maps of acoustic noise employing the PL-Grid infrastructure extended with a distributed sensor network. The work presented provides a demonstration of the services being prepared within the PLGrid Plus project for measuring, modeling and rendering data related to noise level distribution in city agglomerations. Specific computational environments, the so-called domain grids, are developed in the mentioned project. For particular domain grids, specialized IT solutions are prepared, i.e. software implementation and hardware (infrastructure adaptation), dedicated for particular researcher groups demands, including acoustics (the domain grid “Acoustics”). The infrastructure and the software developed can be utilized mainly for research and education purposes, however it can also help in urban planning. The engineered software is intended for creating maps of noise threat for road, railways and industrial sources. Integration of the software services with the distributed sensor network enables automatic updating noise maps for a specific time period. The unique feature of the developed software is a possibility of evaluating auditory effects which are caused by the exposure to excessive noise. The estimation of auditory effects is based on calculated noise levels in a given exposure period. The outcomes of this research study are presented in a form of the cumulative noise dose and the characteristics of the temporary threshold shift.
Go to article

Abstract

The impulse noise is agent harmful to health not only in the case of shots from firearms and the explosions of explosive materials. This kind of noise is also present in many workplaces in the industry. The paper presents the results of noise parameters measurements in workplaces where four different die forging hammers were used. The measured values of the C-weighted peak sound pressure level, the A-weighted maximum sound pressure level and A-weighted noise exposure level normalized to an 8 h working day (daily noise exposure level) exceeded the exposure limit values. For example, the highest measured value of the C-weighted peak sound pressure level was 148.9 dB. In this study possibility of the protection of hearing with the use of earplugs or earmuffs was assessed. The measurement method for the measurements of noise parameters under hearing protection devices using an acoustical test fixture instead of testing with the participation of subjects was used. The results of these measurements allows for assessment which of two tested earplugs and two tested earmuffs sufficiently protect hearing of workers in workplaces where forging hammers are used.
Go to article

Abstract

The paper shows a study on the relationship between noise measures and sound quality (SQ) features that are related to annoyance caused by the traffic noise. First, a methodology to perform analyses related to the traffic noise annoyance is described including references to parameters of the assessment of road noise sources. Next, the measurement setup, location and results are presented along with the derived sound quality features. Then, statistical analyses are performed to compare the measurement results and sound quality features. The included conclusions are focused on showing that the obtained loudness values, regardless of the used system, are similar in a statistical sense. Contrarily, sharpness, roughness and fluctuation strength values differ for the tools employed.
Go to article

Abstract

The acoustic climate assessment needed for the selection of solutions (technical, legal and organisational), which will help to minimise the acoustic hazards in the analysed areas, is realised on the basis of acoustic maps. The reference computational algorithms, assigned to them, require very thorough preparation of input data for the considered noise source model representing - in the best possible way - the acoustic climate. These input data are burdened with certain uncertainties in this class of computational tasks. The uncertainties are related to the problem of selecting proper argument values (from the interval of their possible variability) for the modelled processes. This situation has a direct influence on the uncertainty of acoustic maps. The idea of applying the interval arithmetic for the assessment of acoustic models uncertainty is formulated in this paper. The computational formalism assigned to the interval arithmetic was discussed. The rules of interval estimations for the model solutions determining the sound level distribution around the analysed noise source - caused by possible errors in the input data - were presented. The application of this formalism was illustrated in uncertainty assessments of modelling acoustic influences of the railway noise linear source on the environment.
Go to article

Abstract

Within the boundaries of many municipal urbanized areas, large grounds are found, from which the noise is emitted into the environment, surrounded by the regions liable to acoustic protection. Such a condition generates many problems including also those ones related to the lack of the fulfillment of requirements concerning environmental protection against excessive noise. Therefore the aim of vital importance is the proper management of municipal grounds, both in view of the investment in policy steering, especially of new investments, and in the case of activities aimed at maintaining or restoring (revitalizing) the acoustic properties on the grounds that have already been used or simply degraded before. Keeping the scale of the problem in mind, such activities must be carried on not temporarily, but must have a systemic character. The structure of every system is characterized by the appropriate relationships among their elements and the properties of those relationships. In case of the noise management system, the elements of such a system are the activities connected with the management itself that are the actions which rely on specifying the aims and causing their realization within the scope and on the grounds subject to the managing entity. The superior aim of such activities should be to supply the tools for improvement of management and in the process of taking decisions that relate to investments including the of optimization conditions and maintenance of socio-economic importance of such areas.
Go to article

Abstract

The aim of the study was to determine the configuration of pathologic audiograms in patients with excessive noise exposure, and to calculate the frequency of notches in the audiogram in patients with and without excessive noise exposure by avoiding the effect of age-related hearing loss. We have analyzed 514 audiograms of 257 patients aged between 20 to 50 years: 240 patients (mean age of 38.7 years) with excessive noise exposure and 17 patients (mean age of 41.2 years) with notches in the audiogram, but without a history of excessive noise exposure. For statistical data analysis we have used the Chi-square test and Fisher exact test with the level of significance p < 0.05. Pathologic audiograms were classified into five different types: Slope at 4000 Hz (0.8%), Slope at 2000 Hz (15.1%), Notch at 4000 Hz (67.4%), Notch at 2000 Hz (0.8%), Flat (8.9%), and 7% were out of this classification. A total of 190 (79.2%) patients with excessive noise exposure had a notch in the audiogram. Left ear notches were the most common. Among the patients with notched audiograms, 91.8% had a history of excessive noise exposure, either occupational or nonoccupational, and 8.2% did not report any excessive noise exposure.
Go to article

Abstract

For the use of acoustic assessment of machinery, a global index of acoustic quality has been developed. Acoustic quality index is considered as a product of the following partial indices: sound power index, index of distance between the workstation and the machine, radiation directivity index, impulse and impact noise index and noise spectrum index. Each partial index always assumes positive value. If the value of global index does not exceed 1, the noise of the assessed machine will not exceed the admissible value of A-weighted sound pressure level at the workstation. Experimental tests were carried out in order to determine the values of global indices for a group of engine-generators, with the use of inversion method allowing for the determination of sound power level. The correctness of the determined values of indices was confirmed by the results of A-weighted sound pressure level measurements, at the hypothetically assumed workstations in simulated in situ conditions.
Go to article

Abstract

The use of ultrasonic energy has created versatile possibilities of their applications in many areas of life, especially in hydro location and underwater telecommunications, industry and medicine. The consequence of a widespread use of high intensity ultrasonics in technology is the increased number of people who are exposed to such ultrasonic noise. Therefore it is important to determine the types of machines and other devices that are responsible for the emission of ultrasonic noise (10-40 kHz of central frequencies of one-third octave bands) as harmful and annoying hazard in the work environment. This paper presents ultrasonic noise sources frequently used in industry and preventive measures reducing the exposure to ultrasonic noise. Two types of ultrasonic noise sources have been distinguished: machines and other devices used to carry out or improve production processes, the so-called technological sources and sources in which ultrasonic noise exists as a non-intentional result of operation of many machines and systems, the so-called non-technological sources of ultrasonic noise. The emission of SPL has been determined for each groups of devices based on own measurement results.
Go to article

Abstract

Application of active noise reduction (ANR) systems in hearing protectors requires the use of control algorithms to ensure stability of the ANR system and at the same time highly effective active noise reduction. A control algorithm based on NOTCH filters is an example of solutions that meet these criteria. Their disadvantage is operation over a narrow frequency band and a need for prior determination of frequencies to be reduced. This paper presents a solution of the ANR system for hearing protectors which is controlled with the use of modified NOTCH filters with parameters determined by a genetic algorithm. Application of a genetic algorithm allows to change the NOTCH filter reference signal frequency, and thus, adapt the filter to the reduced signal frequency.
Go to article

Abstract

The paper consists of study results of exposure to high frequency noise at metalworking workplaces. The study was carried out using objective methods (measurements of parameters characterizing the noise) and subjective studies (questionnaire survey). Metalworking workplaces were located in a steel structure (e.g. deck gratings) of the manufacturing plant. The results are equivalent sound pressure levels in the 1/3 octave frequency bands with center frequencies from 10 kHz to 40 kHz in reference to an 8-hour workday equal to approximately 81-105 dB at most of the tested workplaces and exceed permissible values. The questionnaire survey of annoyance high frequency noise (i.e. in the audible frequency and low ultrasound range) was conducted among 52 operators of machines. Most of the workers describe the noise as: buzzing, insistent, whistling and high-pitched squeaky. Respondents specify the noise levels occurring at workplaces as: loud, impeding communication, highly strenuous and tiring.
Go to article

Abstract

In 2011, over 520 thousand persons worked in hazardous conditions (according to the GUS). Among hazardous factors related to working environment noise was found to be the most common one, threatening 199,6 thousand people (52.9% threats-per-persons related to working environment). The prevalence of workplace noise and increasing awareness of effects of its impact on the human body causes increase of the demand for knowledge of the methods of noise reduction. Due to the lack of knowledge concerning the proper use of hearing protectors, effective noise exposure in the real world may be about a dozen dB higher than the declared assumed protection value. For this reason, in Central Institute for Labour Protection - NRI “The interactive system for learning the correct use of hearing protectors” has been developed. The system includes a multimedia guide on hearing protectors supplemented by video tutorials, training materials with training hearing protectors, and software for evaluation of the activities of the trainee.
Go to article

Abstract

The article is a continuation of the authors’ elaboration (Dąbrowski, Dziurdź, 2016). The aim of this continuation is to prove that a proposed way of modelling and using the coherent analysis to filter nonlinear disturbances is a useful technique in vibroacoustic diagnostics. The thesis was proved by solving the task of diagnosing the damage of the gear of the car gearbox on the basis of the measurement of mechanical vibrations and the noise in the engine chamber.
Go to article

Abstract

There are many industrial environments which are exposed to a high-level noise. It is necessary to protect people from the noise. Most of the time, the consumer requires a miniature version of a noise canceller to satisfy the internal working place requirements. Very important thing is to select the most appropriate personal hearing protection device, for example an earplug. It should guarantee high passive noise attenuation and allow for secondary sound generation in case of active control. In many cases the noise is nonstationary. For instance, some of the noisy devices are switched on and off, speed of some rotors or fans changes, etc. To avoid any severe transient acoustic effects due to potential convergence problems of adaptive systems, a fixed-parameter approach to control is appreciated. If the noise were stationary, it would be possible to design an optimal control filter minimising variance of the signal being the effect of the acoustic noise and the secondary sound interference. Because of noise nonstationarity for most applications, the idea of generalised disturbance defined by a frequency window of different types has been developed by the authors and announced in previous publications. The aim of this paper is to apply such an approach to different earplugs and verify its noise reduction properties. Simulation experiments are conducted based on real world measurements performed using the G. R. A. S. artificial head equipped with an artificial mechanical ear, and the noise recorded in a power plant.
Go to article

Abstract

The implemented online urban noise pollution monitoring system is presented with regard to its conceptual assumptions and technical realization. A concept of the noise source parameters dynamic assessment is introduced. The idea of noise modeling, based on noise emission characteristics and emission simulations, was developed and practically utilized in the system. Furthermore, the working system architecture and the data acquisition scheme are described. The method for increasing the speed of noise map calculation employing a supercomputer is explained. The practical implementation of noise maps generation and visualization system is presented, together with introduced improvements in the domain of continuous noise monitoring and acoustic maps creation. Some results of tests performed using the system prototype are shown. The main focus is put on assessing the efficiency of the acoustic maps created with the discussed system, in comparison to results obtained with traditional methods.
Go to article

This page uses 'cookies'. Learn more