Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

The object of the present study is to investigate the influence of damping uncertainty and statistical correlation on the dynamic response of structures with random damping parameters in the neighbourhood of a resonant frequency. A Non-Linear Statistical model (NLSM) is successfully demonstrated to predict the probabilistic response of an industrial building structure with correlated random damping. A practical computational technique to generate first and second-order sensitivity derivatives is presented and the validity of the predicted statistical moments is checked by traditional Monte Carlo simulation. Simulation results show the effectiveness of the NLSM to estimate uncertainty propagation in structural dynamics. In addition, it is demonstrated that the uncertainty in damping indeed influences the system response with the effects being more pronounced for lightly damped structures, higher variability and higher statistical correlation of damping parameters.
Go to article

Abstract

The problem of mathematical modelling and indication of properties of a DIP has been investigated in this paper. The aim of this work is to aggregate the knowledge on a DIP modelling using the Euler-Lagrange formalism in the presence of external forces and friction. To indicate the main properties important for simulation, model parameters identification and control system synthesis, analytical and numerical tools have been used. The investigated properties include stability of equilibrium points, a chaos of dynamics and non-minimum phase behaviour around an upper position. The presented results refer to the model of a physical (constructed) DIP system.
Go to article

Abstract

The nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound mode and the entropy mode. The modes are determined by links between perturbations of pressure, density, and fluid velocity. This definition follows from the linear conservation equations in the differential form and thermodynamic equations of state. The leading order system of coupling equations for interacting modes is derived. It consists of diffusion inhomogeneous equations. The main aim of this study is to identify the principle features of the interaction and to establish individual contributions of attenuation (mechanical and thermal attenuation) in the solution to the system.
Go to article

Abstract

This paper presents a robust model free controller (RMFC) for a class of uncertain continuous-time single-input single-output (SISO) minimum-phase nonaffine-in-control systems. Firstly, the existence of an unknown dynamic inversion controller that can achieve control objectives is demonstrated. Afterwards, a fast approximator is designed to estimate as best as possible this dynamic inversion controller. The proposed robust model free controller is an equivalent realization of the designed fast approximator. The perturbation theory and Tikhonov’s theorem are used to analyze the stability of the overall closed-loop system. The performance of the developped controller are verified experimentally in the position control of a pneumatic actuator system.
Go to article

Abstract

A heterogeneous Bertrand duopoly game with bounded rational and adaptive players manufacturing differentiated products is subject of investigation. The main goal is to demonstrate that participation of one bounded rational player in the game suffices to destabilize the duopoly. The game is modelled with a system of two difference equations. Evolution of prices over time is obtained by iteration of a two dimensional nonlinear map. Equilibria are found and local stability properties thereof are analyzed. Complex behavior of the system is examined by means of numerical simulations. Region of stability of the Nash equilibrium is demonstrated in the plane of the speeds of adjustment. Period doubling route to chaos is presented on the bifurcation diagrams and on the largest Lyapunov characteristic exponent graph. Lyapunov time is calculated. Chaotic attractors are depicted and their fractal dimensions are computed. Sensitive dependence on initial conditions is evidenced.
Go to article

Abstract

The chaotic phenomena of coronary artery systems are hazardous to health and may induce illness development. From the perspective of engineering, the potential harm can be eliminated by synchronizing chaotic coronary artery systems with a normal one. This paper investigates the chaos synchronization problem in light of the methodology of sliding mode control (SMC). Firstly, the nonlinear dynamics of coronary artery systems are presented. Since the coronary artery systems suffer from uncertainties, the technique of derivative-integral terminal SMC is employed to achieve the chaos synchronization task. The stability of such a control system is proven in the sense of Lyapunov. To verify the feasibility and effectiveness of the proposed method, some simulation results are illustrated in comparison with a benchmark.
Go to article

Abstract

This paper presents experimental observation of nonlinear vibrations in the response of a flexible cantilever beam to transverse harmonic base excitations around its flexural mode frequencies. In the experimental setup, instead of manual control of the signal excitation frequency and amplitude, a closed-loop vibration system is used to keep the excitation amplitude constant during the frequency sweep and to increase confidence in the experimental results. The experimental results show the presence of the third mode in the response when varying the excitation frequency around the fourth mode. The frequency-response curves, response spectrum and Poincaré plots were used for characterization of nonlinear dynamic behaviour of the beam.
Go to article

Abstract

Reliable data analysis is one of the hardest tasks in sciences and social sciences. Often misleading and sometimes puzzling results arise when the analysis is done without regard for the special features of the data. In this exposition, I will focus on designing new statistical tools to deal with some prominent questions in Finance and Economics. In particular, I will talk about the following. (1) How to characterize the randomness of variables, motivated by a problem in the pricing of financial options. (2) Uncovering the relation between interest rates on different maturities, now and in the future; the "term structure of interest rates". (3) Modelling the unconventional nonlinear long-memory dynamics that arise from a general-equilibrium economic model, and their implications for exchange rates, stock market indexes, and all macroeconomic variables; with recommendations for trading in financial markets, but also for the design of macroeconomic stabilization policies by governments.
Go to article

This page uses 'cookies'. Learn more