Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

A new soft-fault diagnosis approach for analog circuits with parameter tolerance is proposed in this paper. The approach uses the fuzzy nonlinear programming (FNLP) concept to diagnose an analog circuit under test quantitatively. Node-voltage incremental equations, as constraints of FNLP equation, are built based on the sensitivity analysis. Through evaluating the parameters deviations from the solution of the FNLP equation, it enables us to state whether the actual parameters are within tolerance ranges or some components are faulty. Examples illustrate the proposed approach and show its effectiveness.
Go to article

Abstract

Saccharamyces cerevisia known as baker’s yeast is a product used in various food industries. Worldwide economic competition makes it a necessity that industrial processes be operated in optimum conditions, thus maximisation of biomass in production of saccharamyces cerevisia in fedbatch reactors has gained importance. The facts that the dynamic fermentation model must be considered as a constraint in the optimisation problem, and dynamics involved are complicated, make optimisation of fed-batch processes more difficult. In this work, the amount of biomass in the production of baker’s yeast in fed-batch fermenters was intended to be maximised while minimising unwanted alcohol formation, by regulating substrate and air feed rates. This multiobjective problem has been tackled earlier only from the point of view of finding optimum substrate rate, but no account of air feed rate profiles has been provided. Control vector parameterisation approach was applied the original dynamic optimisation problem which was converted into a NLP problem. Then SQP was used for solving the dynamic optimisation problem. The results demonstrate that optimum substrate and air feeding profiles can be obtained by the proposed optimisation algorithm to achieve the two conflicting goals of maximising biomass and minimising alcohol formation.
Go to article

This page uses 'cookies'. Learn more