Search results

Filters

  • Journals
  • Date

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

This study offers a new method to synthesize facilely willemite (Zn2SiO4) based phosphor at the temperature of 800 °C. The ZnO-SiO2 nanocomposite was calcined at different temperatures between 500 and 1000 °C. The structural, morphological and optical properties of the nanocomposite obtained at various calcination temperatures were studied using different techniques. The FT-IR, XRD and the UV-vis result confirmed the formation of willemite phase. The precursor was confirmed to be amorphous by XRD at room temperature, but upon calcination temperature at 500 °C, it was transformed into a crystalline structure. The crystallinity and the particle size of the nanocomposite increase as the calcination temperature were increased as revealed by XRD and TEM measurement. The sample exhibits a spherical morphology from 500 to 800 °C and dumbbell-like morphology above 800 °C as shown by the FESEM images. The absorption spectrum suffers intense in lower temperature and tends to shift to lower wavelength in the UV region as the calcination temperature increases. The band gap values were found to be increasing from 3.228-5.550 eV obtained between 500 to 1000 °C, and all the results confirm the formation of willemite phase at 800 °C.
Go to article

Abstract

Abstract A conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters for optical sensing applications. The SEM micro-images showed the homogenous, continuous and polycrystalline surface morphology; the mean grain size was within the range of 100-250 nm. The fabricated conductive boron-doped diamond thin films displayed the resistivity below 500 mOhm cm-1 and the transmittance over 50% in the VIS-NIR wavelength range. The studies of optical constants were performed using the spectroscopic ellipsometry for the wavelength range between 260 and 820 nm. A detailed error analysis of the ellipsometric system and optical modelling estimation has been provided. The refractive index values at the 550 nm wavelength were high and varied between 2.24 and 2.35 depending on the percentage content of methane and the temperature of deposition.
Go to article

Abstract

The S-7 borehole log from the Sumina area (USCB Poland) revealed the presence of three basaltic veins originating from a basalt dyke. Coal interlayers in the rocks surrounding the basaltic veins have been coked to form natural coke. Photometric measurements revealed that the optical properties of the studied natural coke samples are characteristic of semi-graphite (Rmax > 9%). The natural coke matrix of all of the analyzed samples has a biaxial negative optical character. Vitrinite in the examined natural coke samples is characterized by a lower optical anisotropy than that of the natural matrix and it has a biaxial positive optical character. Vitrinite in almost all samples taken at locations more distant from the intrusion has a biaxial positive optical character. A reversal of the changes of the true maximum vitrinite reflectance and bireflectance with changing distance from the second basaltic vein has been observed. The temperature regime that acted upon the dispersed organic matter located in the immediate vicinity of the intrusion, estimated on the basis of the selected experimental data, is suggested to be higher than 750 °C.
Go to article

Abstract

A series of copper oxide thin films were synthesized through direct current magnetron sputtering on glass and silicon substrates with various process parameters. Initially, optical microscopy images and their histograms were analyzed to determine the optical quality of the obtained layers and then histograms were created using Image Histogram Generator software. Next, the morphology, and cross-section and layer composition of the samples were evaluated. Finally, the transmission spectra of the thin films were recorded. Transmittance and reflection spectra of the UV–vis analysis were utilized to calculate the optical band gap, the extinction coefficient, and the absorption coefficient of the oxidized layers. Samples showed low transmittance (up to 40%) in the region of 400 to 1000 nm. The mean absorption coefficient varied from ~3 · 105 to ~6 · 105 1/cm and from ~2 · 105 to ~4 · 105 1/cm in the region of 2 eV to 3.5 eV. The extinction coefficient ranged from 0 to 0.11 in the region from 300 to 3000 nm. Reflectance of the samples was ~20% in the region of 1000 to 2500 nm and ranged from 20%-50% in the region of 1000 to 3000 nm. We verified the process parameters of the Cu2O structure to improve the quality as a buffer layer. On the basis of this preliminary analysis, we propose the most promising and future-oriented solutions in photovoltaic applications.
Go to article

Abstract

Constantly developing nanotechnology provides the possibility of manufacturing nanostructured composites with a polymer matrix doped with ceramic nanoparticles, including ZnO. A specific feature of polymers, i.e. ceramic composite materials, is an amelioration in physical properties for polymer matrix and reinforcement. The aim of the paper was to produce thin fibrous composite mats, reinforced with ZnO nanoparticles and a polyvinylpyrrolidone (PVP) matrix obtained by means of the electrospinning process and then examining the influence of the strength of the reinforcement on the morphology and optical properties of the composite nanofibers. The morphology and structure of the fibrous mats was examined by a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and Fourier-transform infrared spectroscopy (FTIR). UV –Vis spectroscopy allowed to examine the impact of zinc oxide on the optical properties of PVP/ZnO nanofibers and to investigate the width of the energy gap.
Go to article

This page uses 'cookies'. Learn more