Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension #27; and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.
Go to article

Abstract

The work contains a description of a developed experimental and theoretical method of modeling of solid waste combustion in a device equipped with a moving grate and capability to optimize the work of waste incineration plant. Implementation of this issue was based on results of experimental studies made on a laboratory scale boiler. This was possible by defining and testing indicators of quantitative assessment of combustion such as: reaction front rate, ignition rate, the rate of combusted mass loss and the heat release rate. These indicators as measurable "criteria indicators" allow transfer of parameters from a laboratory-scale unit, working in the transient regime into an industrial full scale grate device working continuously in stable determined conditions. This allows for wide optimization possibilities in the operation of a waste incineration plant, in particular the combustion chamber, equipped with a moving grate system.
Go to article

Abstract

Studies on biocompatibility of AISI 316LVM steel indicate the need to eliminate the nickel from the surface and replace it with other elements of improved biocompatibility. Therefore, in the presented work selected physicochemical and mechanical properties of the diffusive nitrocarburized layer formed by plasma potential by means of an active screen made of the Fe-Cr-Ni were studied. In the paper we present results of microstructure and phase composition of the layers, roughness, and surface wettability, potentiodynamic pitting corrosion resistance, penetration of ions into the solution as well as mechanical properties. The studies were conducted for the samples of both mechanically polished and nitrocarburized surfaces, after sterilization, and exposure to the Ringer’s solution. Deposition of the nitrocarburized layer increased the contact angle, surface roughness, surface hardness, and corrosion resistance with respect to the polished surfaces. The nitrocarburized layer is a barrier against the ions release into the solution and sterilization and exposure to Ringer solution. The obtained results showed beneficial increase of both mechanical and electrochemical properties of the deposited layer, and thus the applicability of the proposed method of surface treatment of the 316LVM steel for short-term implants after sterylization.
Go to article

This page uses 'cookies'. Learn more