Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In this work the design aspects of a piezoelectric-based resonance ceramic pressure sensor made using low-temperature co-fired ceramic (LTCC) technology and designed for high-temperature applications is presented. The basic pressure-sensor structure consists of a circular, edge-clamped, deformable diaphragm that is bonded to a ring, which is part of the rigid ceramic structure. The resonance pressure sensor has an additional element – a piezoelectric actuator – for stimulating oscillation of the diaphragm in the resonance-frequency mode. The natural resonance frequency is dependent on the diaphragm construction (i.e., its materials and geometry) and on the actuator. This resonance frequency then changes due to the static deflection of the diaphragm caused by the applied pressure. The frequency shift is used as the output signal of the piezoelectric resonance pressure sensor and makes it possible to measure the static pressure. The characteristics of the pressure sensor also depend on the temperature, i.e., the temperature affects both the ceramic structure (its material and geometry) and the properties of the actuator. This work is focused on the ceramic structure, while the actuator will be investigated later.
Go to article

Abstract

The theoretical aspects of a new type of piezo-resistive pressure sensors for environments with rapidly changing temperatures are presented. The idea is that the sensor has two identical diaphragms which have different coefficients of linear thermal expansion. Therefore, when measuring pressure in environments with variable temperature, the diaphragms will have different deflection. This difference can be used to make appropriate correction of the sensor output signal and, thus, to increase accuracy of measurement. Since physical principles of sensors operation enable fast correction of the output signal, the sensor can be used in environments with rapidly changing temperature, which is its essential advantage. The paper presents practical implementation of the proposed theoretical aspects and the results of testing the developed sensor.
Go to article

Abstract

Mechanical properties of the pipeline samples that had been cut in annular and axial directions were investigated. The methodology of modeling and calculation of the real stress-strain state was described. The stable state during in the deformation process was defined. The results of the experimental researches were used as a test variant during examination of pipe strength.
Go to article

This page uses 'cookies'. Learn more