Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Quantitative ultrasound has been widely used for tissue characterization. In this paper we propose a new approach for tissue compression assessment. The proposed method employs the relation between the tissue scatterers’ local spatial distribution and the resulting frequency power spectrum of the backscattered ultrasonic signal. We show that due to spatial distribution of the scatterers, the power spectrum exhibits characteristic variations. These variations can be extracted using the empirical mode decomposition and analyzed. Validation of our approach is performed by simulations and in-vitro experiments using a tissue sample under compression. The scatterers in the compressed tissue sample approach each other and consequently, the power spectrum of the backscattered signal is modified. We present how to assess this phenomenon with our method. The proposed in this paper approach is general and may provide useful information on tissue scattering properties.
Go to article

Abstract

Magnetic-geared permanent magnet (MGPM) electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA). The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.
Go to article

This page uses 'cookies'. Learn more