Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

In the paper presented is the analysis of the results of calculations using a model to predict flow boiling of refrigerants such as R134a, R600a and R290. The latter two fluids were not used in the development of the model semiempirical correction. For that reason the model was verified with present experimental data. The experimental research was conducted for a full range of quality variation and a relatively wide range of mass velocity. The aim of the present study was also to test the sensitivity of developed model to a selection of the model of two-phase flow multiplier and the nonadiabatic effects. For that purpose two models have been analysed namely the one due to Müller-Steinhagen and Heck, and Friedel. In addition, the work shows the importance of taking surface tension into account in the calculation of the flow structure.
Go to article

Abstract

The objective of this work is to present an energy analysis of different absorption refrigerating systems operating with diverse refrigerants. Also is applied the method of experimental design to optimize configurations proposed by the absorption pairs used and the operating conditions. Both acceptable coefficient of performance and low operating generator temperature are scrutinised. Therefore, a computer program is developed. An investigation of the thermodynamic properties is presented. Results show the coefficient of performance evolution versus respectively the evaporator temperature, temperature of condensation and generator temperature. A particular interest is devoted to the intermediate pressure effect on the performance of different systems. In order to better converge in the selection of the configuration and the refrigerant, which can ensure a high coefficient of performance associated to relatively low operating generator temperature the plan of experiments has been developed, taking in account all parameters influencing the system performance and the function of operating temperature. Results show that the refrigerating machine containing a compressor between the evaporator and the absorber has a coefficient of performance quite acceptable and that it can work at low generator temperature for about 60 ◦C and using the NH3/LiNO3 as refrigerant.
Go to article

Abstract

The purpose of this article was to discuss the use of adsorption chillers for waste heat recovery. The introduction discusses the need to undertake broader measures for the effective management of waste heat in the industry and discusses the benefits and technical problems related to heat recovery in industrial plants. In addition, heat sources for adsorption chillers and their application examples were described. The principle of operation of adsorption chillers is explained in the next chapter. Heat sources for adsorption chillers are indicated and their application examples are described. The above considerations have allowed the benefits and technical obstacles related to the use of adsorption chillers to be highlighted. The currently used adsorbents and adsorbates are discussed later in the article. The main part of the paper discusses the use of adsorption chillers for waste heat management in the glassworks. The calculations assumed the natural gas demand of 20.1 million m3 per year and the electricity demand of 20,000 MWh/year. As a result of conducted calculations, a 231 kW adsorption chiller, ensuring the annual cold production of 2,021 MWh, was selected. The economic analysis of the proposed solution has shown that the investment in the adsorption chiller supplied with waste heat from the heat recovery system will bring significant economic benefits after 10 years from its implementation, even with total investment costs of PLN 1,900,000. However, it was noted that in order to obtain satisfactory economic results the production must meet the demand while the cost of building a heat recovery system shall not exceed PLN 1 million.
Go to article

Abstract

According to The European Commission’s regulation numbers 842/2006 and 517/2014, refrigerants whose Global Warming Potential ratio is more than 150, have been prohibited in mobile air conditioning (MAC) since January 2017. Therefore, the commonly used R-134 gas has been banned. The search for a new refrigerant, which grants all the required criteria, has begun. In accordance with new European standards, the gas should have environmentally friendly properties and should not be noxious to human life while operating. In this paper, two alternative substances, which can substitute the banned R134a, have been compared. This is synthetic R1234yf, which belongs to the HFO group, and carbon dioxide, which exists in the natural environment. The chemical build, physical and thermodynamic properties have been described. Scientific articles, which present and compare the technical results of testing both refrigerants, have been discussed. Comparison results, tools used and research methodology have been described in these articles. Alternative gases have been analyzed for their environmental impact and have been checked on the toxic, flammable, impact on ozone depletion and global warming. The threats to human life due to the use of the new refrigerants have been reviewed. The thesis also comprises an economical comparison between the two gases. A short review and conclusions have been presented at the end of the article.
Go to article

This page uses 'cookies'. Learn more